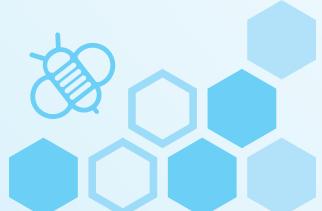


SETAC

SALT LAKE CITY


BUZZING WITH SCIENCE

Cross-Pollination for Environmental Progress

MEETING PROGRAM

SETAC North America 36th Annual Meeting
1-5 November 2015 | Salt Lake City, UT, USA

Come visit us
on Booth #1100

Welcome to a world in
which environmental and
economic outcomes are
not mutually exclusive.

Envigo, one of the world's leading providers of non-clinical research products and services, is dedicated to helping our customers in the crop and chemicals industries achieve the potential of their products and enhance life through greater food production and a safer environment.

For all your testing and regulatory
needs, speak to Envigo.

Welcome to SETAC Salt Lake City

The Society of Environmental Toxicology and Chemistry North America welcomes you to its 36th annual meeting at the Salt Palace Convention Center in Salt Lake City, Utah!

So much has changed in Salt Lake City since we were here in 2002. The city is now home to an arts district, a burgeoning microbrewery industry and a music scene. The Salt Palace itself has been significantly updated with more than 6,000 solar panels installed on the roof in 2012, and in 2006, the building was awarded the US Green Building Council's LEED Silver certification. The city has expanded its light rail system (TRAX) to connect the airport, downtown, universities and nearby towns, and right across the street from the Salt Palace is the new City Creek Center mall.

Our meeting theme, "Buzzing with Science: Cross-Pollination for Environmental Progress," plays on Utah's nickname, "the Beehive State," and highlights SETAC's interest in pollinator health research and advances our strategy for solving environmental problems through cross-disciplinary collaborations. Our technical program reflects the theme through robust, diverse and environmentally relevant topics. On Sunday, choose from ten professional training courses for both personal and technical growth such as "Leadership 101: Evaluate your Behavior, Strengths, and Challenges and Build Leadership Capacity" and "Pesticide Risk Assessment for Pollinators," or join an interactive game for environmental education. Also on Sunday, plenary speaker Lynn de Freitas with Friends of Great Salt Lake will familiarize us with the ecosystem and economy of the city's namesake, the Great Salt Lake. Jim Cane with the US Department of Agriculture will touch on our meeting theme on Monday with a talk about pollinators. On Tuesday, David Montgomery with the University of Washington explores our relationship with and reliance on microbes. And on Wednesday, SETAC's own Elaine Dorward-King with the Newmont Mining Corporation will dig into mining and sustainability.

The week's scientific presentations run Monday through Thursday and are organized in 96 platform sessions and four all-day poster sessions. Special symposia topics include pollinators and agrochemicals, the Deepwater Horizon oil spill, effective science communication and outreach, and a look back at 20 years of metals science contributions by the Ecotoxicity Technical Advisory Panel. The North America Horizon Scanning Workshop will take place on Wednesday and Thursday to analyze feedback on priority research areas identified in the Global Horizon Scanning surveys. The grand finale is the Closing Ceremony on Thursday afternoon, which will include highlights from technical and social activities and previews of upcoming SETAC meetings in Nantes, France, Singapore, and the 7th World Congress/SETAC North America 37th Annual Meeting in Orlando, Florida. And, of course, a drawing for a Hobie kayak and a bicycle from Salem Cycle, but you must be present to win!

If you need a little break to make more room in your brain for science, take advantage of the social program. Activities include trips to the Great Salt Lake, Park City, Wendover, the Utah Olympic Oval and sites within Salt Lake City. Explore some interesting local spots on your own like the Leonardo (as in Da Vinci), which is the city's public library featuring an art gallery, a rooftop garden and beehives, the State Capitol and Temple Square, just to name a few. Stretch your legs at the Melissa Schultz Memorial 5K Fun Run on Tuesday in Liberty Park. And be ready for a musical fight at Keys on Main, a dueling piano bar and host of the Tuesday Night Social.

Be sure to support SETAC student activities by bidding on Silent Auction items and see which SETAC group – Board of Directors, Program Committee or Advisory Groups – brings in the most money to win this friendly competition to support student activities. Last year's highly successful "Jail-and-Bail" returns to raise money for the North America Endowment Fund. Put your mentor, academic advisor or, dare I suggest, your president behind bars for a good cause. SETAC is partnering with Friends of Great Salt Lake and local area schools for this year's Make-a-Difference Service Project, sponsored by Ramboll ENVIRON. The service project will include a Great Salt Lake Area cleanup. If you have extra time before or after the meeting, Utah is also home to amazing scenery and hiking at five National Parks.

This event and outstanding member programming would not be possible without generous contributions of our many meeting supporters, exhibitors and advertisers; SETAC Global Partners and Affiliates; and SETAC North America Sustaining and Affiliate Members.

We also recognize and are grateful for the superhuman efforts of the SETAC Pensacola staff with tremendous support from their SETAC Europe counterparts for making this meeting come together and run smoothly. And finally, on behalf of the SETAC North America Board of Directors, the Salt Lake City Program Committee and SETAC staff, a big thanks to you, the SETAC membership, for your contributions of scientific knowledge, career mentoring, time and participation in this, our 36th annual meeting.

We hope you have a productive, informative meeting and enjoy your time in Salt Lake City!

Elin Ulrich and Carrie Claytor
SETAC Salt Lake City
Program Committee Co-Chairs

Mary Riley
SETAC North America
President

Contents

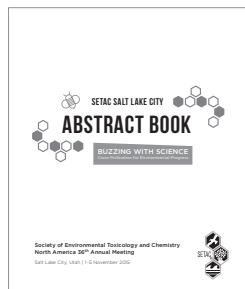
Welcome	1
Meeting Supporters	3
Global Partners and Affiliates	4
Find Your Way Around	5
Sustaining and Affiliate Members	6
Area Tours	7
2015 Award Winners	9
Student Activities	13
Daily Schedule	15
Sunday	15
Monday	19
Tuesday	33
Wednesday	47
Thursday	61
Exhibitor Information	71
Author Index	94
Affiliation Index	108
Policies and Code of Conduct	114

Dear Fellow SETAC Members,

Welcome to the SETAC North America 36th Annual Meeting! We are pleased to join you for an event that promises to be “Buzzing with Science.” The science will buzz at presentations, around posters, in advisory group meetings and while planning activities for our journals, workshops and the upcoming 2016 World Congress in Orlando. The networking opportunities at SETAC’s formal and informal social gatherings will be held with Salt Lake City’s beautiful cityscape as a backdrop.

The annual meeting is also a time to reflect on who we are and where we are headed as a professional society. SETAC was established in 1980 with a few hundred members in North America and has since grown into a truly global organization, now boasting 6,000 members from more than 100 countries. Of the five geographic units – North America, Europe, Asia/Pacific, Latin America and Africa – SETAC North America (SNA) is the largest with about 3,000 members. SNA reflects the multi-sector nature of SETAC with 41 percent of members from academia, 33 percent from business and 19 percent from government. Importantly, SNA includes more than 700 members who are either students or recent graduates. SETAC values and focuses on students and professional development because students are critically important to the future of our society. SNA efforts are visible through the activities of the SETAC North American Student Advisory Council (NASAC), popular mentoring programs, poster, presentation and travel awards, and other opportunities. The Young Environmental Scientist (YES) meeting, a meeting by students for students, originated in SETAC Europe and is going global with the next meeting being held in Gainesville, Florida, in 2016.

Researchers at all levels of their career are encouraged to join one or more Advisory Groups, which provide an opportunity to discuss various scientific issues of interest. Advisory Groups are open to all, not just “experts” in the area, so please take advantage. And, if you are interested in regional activities, use the meeting to seek out your local SETAC chapter. The grassroots nature of SETAC places the future of our science programming in your hands. As the society continues to grow and as environmental issues and challenges continue to emerge, there is a lot to dive into.

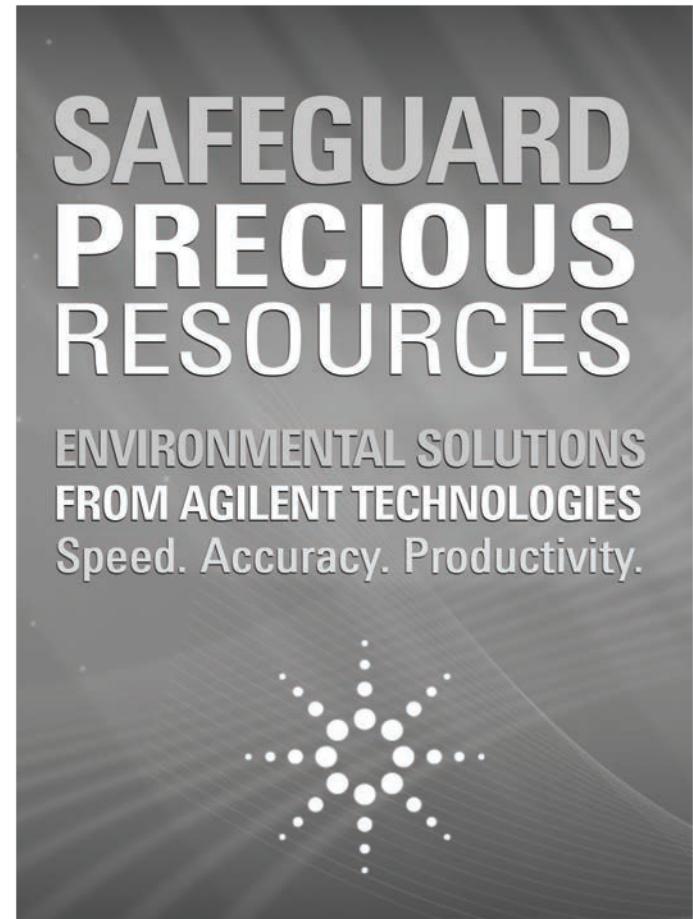

Please introduce yourself to us during the course of the meeting. Feel free to ask us any question about SETAC, and explore how you can use our society to help you achieve your professional goals.

Have a great meeting,

Barnett A. Rattner *Charles Menzie*

Barnett Rattner
SETAC President

Charles Menzie
SETAC Global
Executive Director


ABSTRACT BOOK

Download your copy of the SETAC Salt Lake City abstract book at slc.setac.org.

MEETING APP

Download the free SETAC Salt Lake City meeting app from iTunes or Android app stores.

Please help us thank our meeting supporters for their generous contributions!

- » ABC Laboratories
- » Agilent Technologies, Inc.
- » ARCADIS
- » BASF
- » Chevron Energy Technology
- » Colgate-Palmolive
- » Colorado School of Mines
- » Compliance Services International
- » Duke University Faculty
- » Elin Ulrich
- » E.R. Mancini & Associates
- » Erin R. Bennett
- » FMC Agricultural Solutions
- » Fort Environmental Laboratories
- » GHD
- » Gradient
- » Great Lakes Environmental Center
- » Keri Hornbuckle
- » MERA
- » Monsanto
- » P&G
- » Perkin Elmer
- » Ramboll ENVIRON
- » Renee Falconer
- » Rio Tinto
- » Royal Society of Chemistry
- » S. C. Johnson & Son, Inc.
- » Sage Environmental Consulting
- » Salem Cycle
- » Smithers Viscient
- » SRC, Inc.
- » Syngenta Crop Protection
- » Todd Anderson
- » TRE Environmental Strategies
- » Visit Salt Lake
- » Waterborne Environmental, Inc.
- » Wildlife International, Ltd.

Program Committee

Chairs	Socials
Carrie Claytor	Charles Wong
Elin Ulrich	Annette Easton
Scientific Committee	Fundraising
Marta Venier	Rami Naddy
Aaron Roberts	Dave Pillard
Joe Meyer	
Bill Foreman	
Emma Lavoie	
Plenary Speakers and Special Symposia	Volunteers Committee
Jeff Morris	Dave Mayfield
Chris Mebane	Stephanie Baker
Exhibits	Green/Service Committee
Sascha Usenko	Jamie DeWitt
Michael Lee Jones	Ping Sun (Sunny)
Professional Training Courses	Student Activities
Jodi Mohs-Davis	Renee Falconer
Christy Morrisey	Austin Gray
	Nicole Hagan

SETAC North America Staff

Greg.Schiefer@setac.org, Executive Director
 Jason.Andersen@setac.org, IT Manager
 Sabine.Barrett@setac.org, Communications Manager
 Teresa.Daugherty@setac.org, Finance and Membership
 Linda.Fenner@setac.org, Finance and Exhibits Manager
 Jen.Lynch@setac.org, Publications Manager
 Nikki.Mayo@setac.org, Events Manager
 Josh.Sullivan@setac.org, Communications Specialist
 Laura.Swanson@setac.org, Membership and Awards Manager
 Bruce.Vigon@setac.org, Scientific Affairs Manager

And a special thanks to the SETAC Europe staff for their on-site support:

Bart Bosveld, Roel Evens, Veerle Vandeviere and Valerie Verstappen

SETAC Global Partners and Affiliates

A big thank you to the SETAC Global Partners and Affiliates for helping ensure our goal of Environmental Quality Through Science®.

www.3m.com

Design & Consultancy
for natural and
built assets

www.arcadis.com

www.colgate.com

www.defra.gov.uk

www.eastman.com

www.exponent.com

www.exxonmobil.com

www.newmont.com

www.pg.com

www.riotinto.com

www.scjohnson.com

www.shell.com

www.smithersviscient.com

www.syngentacropprotection.com

www.unilever.com

www.wildlifeinternational.com

american cleaning institute®
for better living

www.cleaninginstitute.org

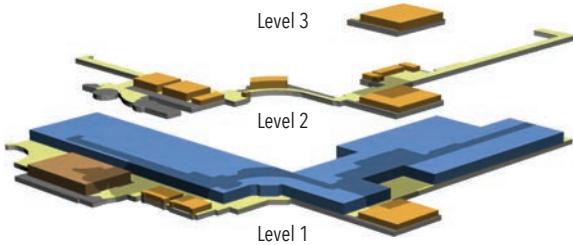
www.globalsilicones.org

www.hesiglobal.org

International Copper Association, Ltd.

www.copperinfo.com

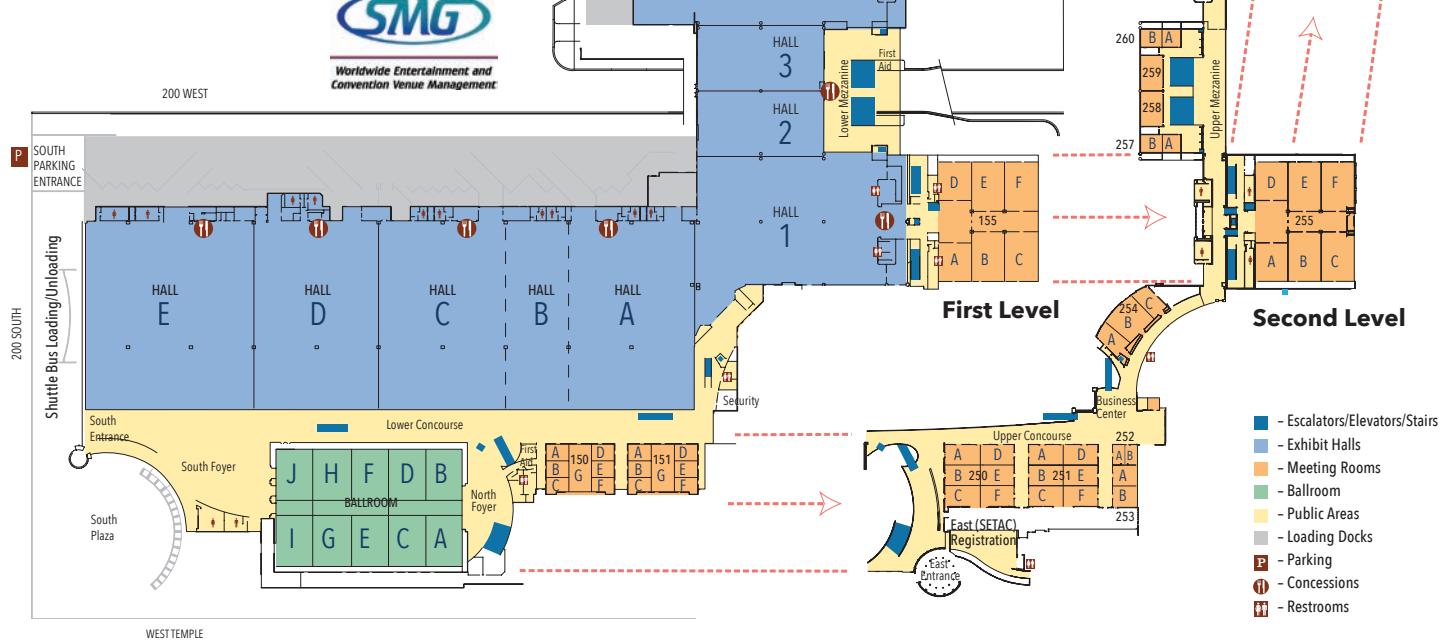
www.iza.com



www.personalcarecouncil.org

www.rifm.org

Interested in becoming a
SETAC Global Partner or Affiliate
Member? Visit us at the registration desk
during the meeting, or contact:
Linda Fenner
linda.fenner@setac.org
+1 850 469 1500 ext. 108.


Convention Center

Calvin L. Rampton Salt Palace Convention Center

100 West Temple, Salt Lake City, UT 84101

Phone: (385) 468-2222

- » Silver level LEED certification
- » Solar panel installation on the Salt Palace rooftop provides 1.59 megawatts of solar power

Things to Do in Salt Lake City

You'll never run out of things to do in Salt Lake City. Take some time to see the sights in and around the beautiful city and state. From mountain recreation to art museums to historic shopping villages, Salt Lake City offers something for everyone.

Visit visitsaltlake.com/setac2015/ to find out more.

SETAC North America Sustaining and Affiliate Members

SETAC North America Sustaining and Affiliate Members are for-profit and nonprofit organizations, institutions, government agencies or associations who are concerned with the society's affairs and who help advance the society's goals. Thank you for your support!

www.abclabs.com

Agilent Technologies

www.agilent.com

Bayer CropScience

www.bayercropscience.com

www.entrax.com

CH2MHILL

www.ch2m.com

www.chevron.com

COMPLIANCE
SERVICES
INTERNATIONAL

www.complianceservices.com

Copper Development
Association Inc.
Copper Alliance

www.copper.org

www.dow.com

www.dupont.com

www.eaest.com

www.epri.com

www.eeusa.com

www.fmc.com

www.geiconsultants.com

www.golder.com

www.lgcstandards.com

www.monsanto.com

www.srcinc.com

www.tetratech.com

www.thecloroxcompany.com

www.well-labs.com

www.windwardenv.com

www.api.org

www.baylor.edu

www.cwn-rce.ca

www.oregonstate.edu

www.semo.edu

www.tiehh.ttu.edu

www.usask.ca

Interested in becoming a SETAC North America Sustaining or Affiliate Member?

Visit us at the registration desk during the meeting, or contact Linda Fenner, linda.fenner@setac.org or +1 850 469 1500 ext. 108, for more information.

All tours will depart from the Salt Palace Convention Center. Please arrive 15 minutes prior to departure time.

Sunday

Birding at Antelope Island

8:00 a.m.-2:00 p.m. | Meeting Point Near SETAC
Registration | \$45

The SETAC Birding Group will explore Antelope Island, a highly regarded bird- and wildlife-viewing destination approximately one hour north of Salt Lake City. Millions of birds, particularly a wide variety of waterfowl and wading birds, congregate along the shores surrounding the island, offering unparalleled opportunities for birding. Antelope Island is one of the best area hotspots for rarities including three species of scoter, Long-tailed Duck, Harlequin Duck, Ruddy Turnstone, Hudsonian Godwit, Sabine's Gull, Mew Gull, Curlew Sandpiper, Red Phalarope and Snow Bunting. Late fall and early winter, coinciding with our SETAC meeting, are a great time to visit this region as Eared Grebes and Wilson's Phalaropes use the Great Salt Lake as a staging area, along with numerous other species. Our destination, the 28,800-acre Antelope Island State Park, features an abundant wildlife population, including one of the largest free roaming herds of American bison in the US; pronghorn also have been successfully introduced to the park.

Our trip will be led by Don Paul, president of AvianWest Inc., a bird and habitat conservation business. He currently serves on the Shorebird Science Team for the Intermountain West Joint Venture. He is also President of the Linking Communities, Wetlands and Migratory Birds, Utah Committee. Don Paul is a career wildlife biologist who consults for a variety of organizations interested in the Great Salt Lake and its birds. He is also a founding member of the Great Salt Lake Bird Festival planning committee.

Monday

Ice Skating at the Utah Olympic Oval

1:00 p.m.-4:00 p.m. | Meeting Point Near SETAC
Registration | \$55

Lace up your skates and step out onto the ice of an official Olympic venue! During the 2002 Winter Games, the Oval saw athletes set 10 Olympic records and eight world records, while the facility gained a reputation for the "Fastest Ice on Earth." Learn to curl or just enjoy a relaxing spin around the arena. Ice skate rental is included. Please arrive 15 minutes prior to departure time. Tour will depart and return to the Salt Palace Convention Center.

Wednesday

ATV/Wendover Trip

8:00 a.m.-8:00 p.m. | Meeting Point Near SETAC
Registration | \$205

Come join us for a guided day-trip across the Great Salt Lake Desert into the heart of the Great Basin. Wendover, 120 miles west of Salt Lake City, sits in the middle of one of the largest open public land areas in the US. Enjoy a professional guide that will offer interpretation of the areas rich natural and human history.

You will see and learn about the Great Salt Lake, the California Trail, the Pony Express Trail, the Bonneville Salt Flats and International Speedway, Danger Cave, World War II Wendover Airfield, native cultures, geology and ecology, wildlife viewing, including wild horses, and more. There will also be the opportunity to enjoy Nevada-style gaming at one of five Wendover Casinos with 4 hours of free time. The trip includes lunch and the option for a two-hour ATV Tour, weather permitting.

Optical Oxygen Sensor Systems

FireSting O₂ meter

One Device – Many Applications with different fiber-optic oxygen sensors

Available Oxygen Sensors

- normal and trace sensors
- for gases and liquids
- automatic temperature and pressure compensation
- versatile logger software

NEW Oxygen Sensors

- Solvent-Resistant Probe
- Nanoprobes

pyroscience
sensor technology

2015 SETAC Global Award Winners

Founders Award

Charles Tyler, University of Exeter

The Founders Award is the highest honor SETAC can bestow. It is given to an individual whose outstanding career and significant contributions to environmental science reflect the goals of SETAC.

Herb Ward Exceptional Service Award

Joke van Wensem, Soil Protection Technical Committee

Renamed in 1999 to honor *Environmental Toxicology and Chemistry*'s founding Editor-in-Chief C. Herb Ward for his important contributions to the founding and development of SETAC, this award recognizes a SETAC member who has performed long-term, exceptionally high-quality service to the society.

SETAC/ICA Chris Lee Award

Anne Cremazy, University of British Columbia

Jointly sponsored by SETAC and the International Copper Association, this award provides up to \$5,000 to a graduate student or recent graduate whose ongoing research focuses on fate and effects of metals in the environment.

SETAC/Procter & Gamble Fellowship

To be announced at the Opening Ceremony

6:00 p.m.-7:30 p.m. | Ballroom A

This \$15,000, 1-year grant, sponsored by Procter & Gamble, is bestowed annually, and rotates among the five SETAC geographic units. The Fellowship will recognize a student enrolled in a doctoral program at a European or African university.

THE SETAC JOURNAL BEST PAPER AWARDS RECOGNIZE INNOVATIVE OR CREATIVE PAPERS WITH TRANSPARENT, REPRODUCIBLE, RIGOROUS, AND RELEVANT SCIENCE.

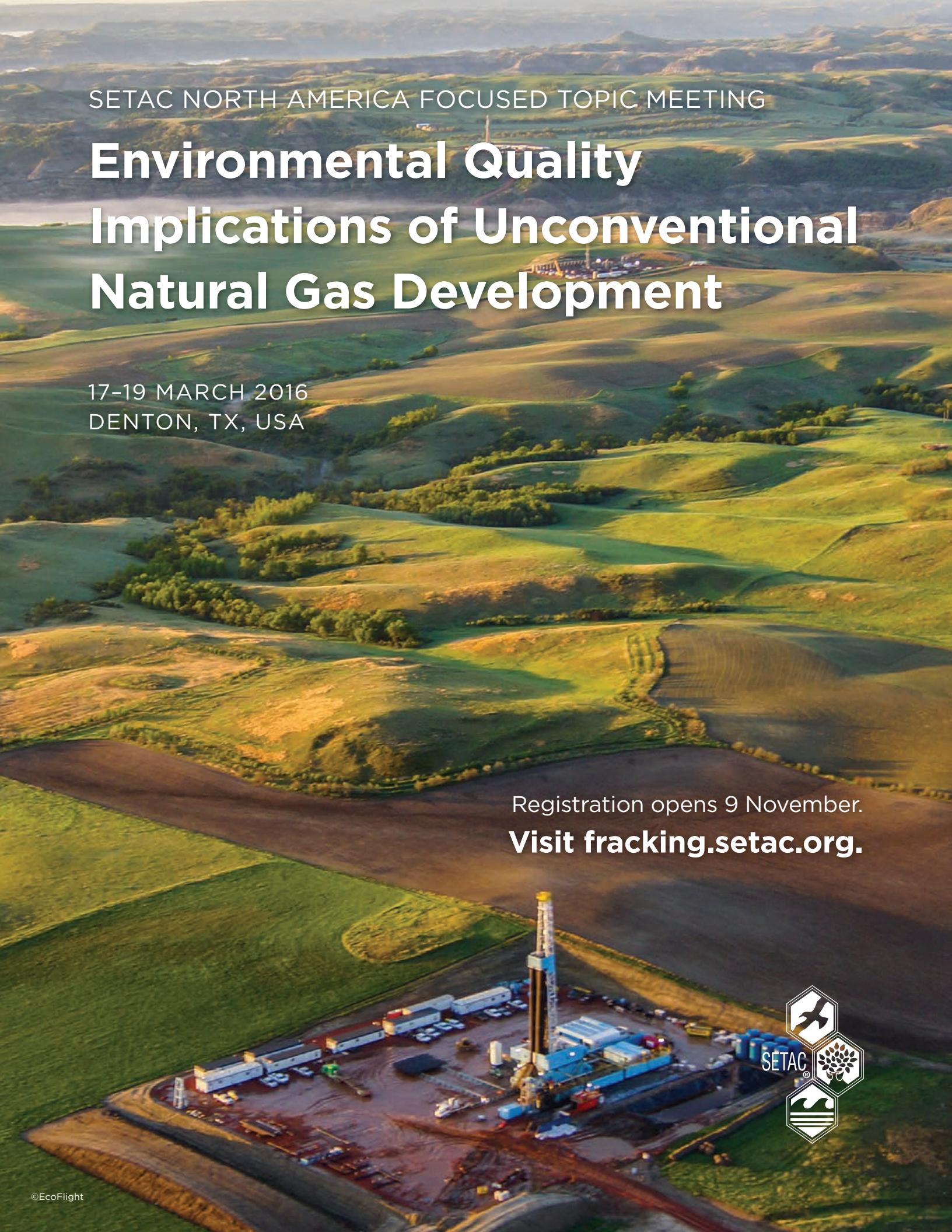
Environmental Toxicology and Chemistry Best Student Paper Award, Sponsored by Colgate-Palmolive

Francesca Gissi, CSIRO

A robust bioassay to assess the toxicity of metals to the Antarctic marine microalga *Phaeocystis antarctica*
Francesca Gissi, Merrin Adams, Catherine King and Dianne Jolley

Environmental Toxicology and Chemistry Best Paper Award

Matthew J. Binnington, University of Toronto


Clarifying relationships between persistent organic pollutant concentrations and age in wildlife biomonitoring: Individuals, cross-sections, and the roles of lifespan and sex
Matthew J. Binnington and Frank Wania

Integrated Environmental Assessment and Management Best Paper Award

David Janz, University of Saskatchewan

Integrative assessment of selenium speciation, biogeochemistry, and distribution in a northern coldwater ecosystem
David M. Janz, Karsten Liber, Ingrid J. Pickering, Cheryl I.E. Wiramanaden, Shari A. Weech, Maria Gallego-Gallegos, Melissa K. Driessnack, Eric D. Franz, Meghan M. Goertzen, James Phibbs, Justin J. Tse, Kevin T. Himbeault, Erin L. Robertson, Charlene Burnett-Seidel, Kent England and Anne Gent

SETAC NORTH AMERICA FOCUSED TOPIC MEETING

Environmental Quality Implications of Unconventional Natural Gas Development

17-19 MARCH 2016
DENTON, TX, USA

Registration opens 9 November.
Visit fracking.setac.org.

2015 SETAC North America Award Winners

SETAC Government Service Award

Fengchang Wu, Chinese Research Academy of Environmental Science

Recognizing exemplary dedication and service by a scientist toward promoting the collective application of environmental toxicology and chemistry to risk assessment in a government function.

SETAC/Menzie Environmental Education Award

Kenneth Sajwan, Savannah State University

This year the award, sponsored by the Menzie family, targeted improving environmental science curricula and technical education at any level of the educational system and supporting innovative educational programs that encouraged and stimulated the professional development of environmental scientists.

SETAC/EA Jeff Black Fellowship Award

Timothy Bock, Rhode Island College

Jointly sponsored by EA Engineering, Science, and Technology, Inc. and SETAC, this fellowship provides \$2,000 to an outstanding Master's level student engaged in any field of study encompassed by SETAC.

Eugene Kanaga SETAC Membership Award

Paul Sibley, University of Guelph

The Eugene Kanaga Award is given annually to any member that provides leadership and development opportunities to the members of SETAC at either the national or chapter level.

Outstanding Regional Chapter Member Award

David Kent, Science Traveler

This award goes to a North America regional chapter member who consistently contributes to the development of the society at the chapter level and who has improved the chapter's services.

Student Travel Awards

SETAC NORTH AMERICA ENDOWMENT FUND

PHD

Bethany DeCourten, University of North Carolina, Wilmington

MASTERS

Sharon Hartzell, University of Maryland College Park

UNDERGRADUATE

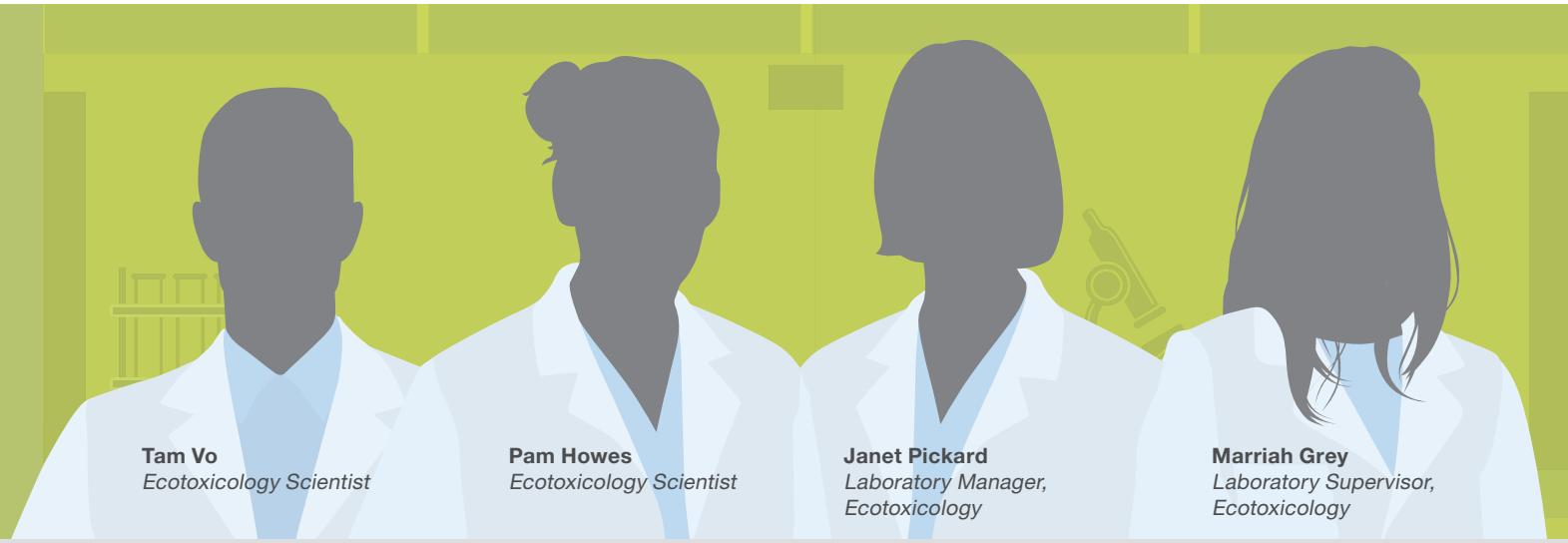
Leah Cuscito, University of Winnipeg

Meet our ecotoxicology team

Questions about product testing?

Ask Tam.

Questions about GLP testing?


Ask Pam.

Questions about effluent testing?

Ask Janet.

Questions about sediment testing?

Ask Marriah.

Visit us at booth #404 and put a face to a name!

Maxxam supports critical decisions made by our customers through the application of rigorous science & the knowledge of our scientific experts.

With over 30 years of experience in aquatic toxicity testing, Maxxam's ecotox team is able to provide a wide range of toxicology services in addition to routine toxicity testing. As needed, we will coordinate across our national network of laboratories to meet customer testing requirements.

Success Through Science®

maxxam.ca/ecotox

Maxxam
A Bureau Veritas Group Company

Student Events at a Glance

Not signed up for one of our student events? Talk to us at the registration desk to see if there are still spots available.

Sunday

7:30 p.m.–9:30 p.m. **Meet NASAC Members** | Student Corner in the Exhibit Hall
SETAC North America Student Advisory Council (NASAC) members will be available during the opening reception and poster socials throughout the week. Chat with your NASAC representatives and learn more about what we do and how you can become more involved.

Monday

11:15 a.m.–1:00 p.m. **Student/Mentor Lunch** | Room 255DEF | Cost: US\$5 and pre-registration is required
After the morning platform sessions on Monday, plan to attend the Student/Mentor Lunch. You can't afford to miss this opportunity to mingle and dine with many SETAC members! Your participation will strengthen your networks within SETAC and provide a valuable opportunity to discuss scientific topics and career experiences with mentors. There will be informal mingling for half an hour, followed by lunch.

All day **Reddit Ask Me Anything** | Student Corner in the Exhibit Hall

6:00 p.m.–6:30 p.m. **Meet NASAC Members** | Student Corner in the Exhibit Hall

Tuesday

11:15 a.m.–1:00 p.m. **Women in SETAC Luncheon** | 254 | Cost: \$30 and pre-registration is required
Students are encouraged to attend the Women in SETAC Luncheon. This year's speaker, Carine Clark, President and CEO at MaritzCX, will address "Risk – Conquering Fear and Embracing Disruption." Find out more on page 35.

6:00 p.m.–6:30 p.m. **Meet NASAC Members** | Student Corner in the Exhibit Hall

Wednesday

9:00 a.m.–11:00 a.m. **Career Navigation** | Student Corner in the Exhibit Hall
Finding your first job after graduation can be difficult. To make the transition easier, become part of the inaugural Career Navigation event, which will provide students with tools to help find professional careers post-graduation. Meet professionals working in the area of environmental toxicology and chemistry and get their feedback on your resume and guidance about possible career-paths.

11:15 a.m.–1:00 p.m. **Noontime Seminar** | 254 ABC | Cost: Free but pre-registration is required
Emily Skor, Vice President, Communications, Consumer Healthcare Products Association (CHPA) and Executive Director, CHPA Educational Foundation will discuss "Communicating Risk in 140 Characters or Less." Find out more on page 49.

1:00 p.m.–2:00 p.m. **NASAC Open Student Assembly** | 254 ABC
Please join us for our annual Open Student Assembly Meeting! We will give a short presentation about NASAC and how you can get involved. We'd love to hear your ideas about student activities for the next annual meeting and beyond. We will also have a short presentation about the 5th Young Environmental Scientist meeting in 2016 in Gainesville, Florida. Hope to see you there!

6:00 p.m.–6:30 p.m. **Meet NASAC Members** | Student Corner in the Exhibit Hall

9:00 p.m.–until **Student Mixer** | The Hotel and Club Elevate | Cost: \$20 (tickets include 2 drinks)
Come join us for the 2nd Annual North America Student Mixer! There will be drinks, music and dancing at The Hotel and Club Elevate. Drinking age is 21+. Transportation will not be provided but the venue is within walking distance of the convention center.

SETAC Europe 26th Annual Meeting

22-26 May 2016

Nantes, France

La Cité Nantes Events Center

nantes.setac.org

Nantes 2016
SETAC Europe

Environmental Contaminants from Land to Sea: Continuities and Interfaces in Environmental Toxicology and Chemistry

Abstract submission deadline: 25 November

www.setac.org

Opening Ceremony

6:00 p.m.-7:30 p.m. | Ballroom ABCD

Keynote by Lynn de Freitas

Executive Director, FRIENDS of Great Salt Lake

Lynn de Freitas's presentation will provide an introduction to the natural history of the Great Salt Lake and the surrounding area. De Freitas began her involvement with FRIENDS of Great Salt Lake shortly after its founding in 1994. She became president of the board in 1996 and executive director in 2002. She is a full-time volunteer. She especially enjoys working on developing policies that address the unique role and characteristics of the Great Salt Lake to ensure its long-term sustainability.

Prior to her affiliation with FRIENDS of Great Salt Lake, de Freitas was a library media coordinator for 18 years in both

public and private schools in the Salt Lake area. She holds a B.S. degree in Biology from Montclair State College and a M.Ed. degree in Educational Systems and Learning Resources from the University of Utah. In 2007, she received the Girl Scouts of Utah Award for Courage, Confidence and Character. In 2006, she received the Calvin K. Sudweeks Award for outstanding contributions in the water quality field in the State of Utah by the Utah Water Quality Board. In 2002, she received the Utah Environmental Educator Volunteer of the Year Award from the Utah Society for Environmental Education.

In her free time, she is an avid birder, enjoys travel and is learning dressage.

Hydrotopia: An Interactive Game for Environmental Education

Game: Sunday 1 November | 1:00-5:00 p.m. | Room 250 AB

Reflection Session: Tuesday 3 November
1:00 p.m.-3:00 p.m. | Room 151G

As taught in most introductions to environmental toxicology, the 20th century has seen a paradigm shift from “dilution is the solution to pollution” to an idea that actions can “boomerang” and waste that is thrown away can come back to do harm. Effective management of environmental resources requires foresight to predict potential consequences and rapid adaptation to emerging information. For many students, there’s also a difference between understanding large concepts like systemic risk and delayed response in the abstract to actually applying lessons learned.

Hydrotopia is an educational game that gives participants the opportunity to assume the role of decision-makers, balancing the sometimes conflicting needs of different stakeholders. Each team of players assumes the management of a virtual town located along the continuum of a large river. Players will be tasked with developing the economy of their towns, providing their towns with clean drinking water, voting on important environmental regulation and commissioning scientific studies to gain additional information. All teams will also have a unique goal for the game, meaning that each team will effectively represent a different group of stakeholders. This format is ideal for teaching the cumulative effects of pollution and the tragedy of the commons, as well as the difficulty of cooperation between competing interests. Other topics such as contaminant fate and transport, dose response and population ecology are also touched on, making Hydrotopia a powerful tool for teaching abstract concepts that are important to environmental science education.

Pharmaceutical Advisory Group Symposium

Global Distribution of Pharmaceuticals in the Environment-Implications for Monitoring and Management Strategies

1:00 p.m.-5:00 p.m. | Room 250 DE | Price: \$30

The aim of this half-day symposia is to bring together a number of experts to provide an overview on the current status of knowledge relating to regional differences in the concentrations and classes of pharmaceuticals present in the environment, factors that can influence the use or release of pharmaceuticals in different regions, perceived impacts of pharmaceuticals due to geographical and cultural differences and the ability to transfer knowledge between regions to assist in management of the issue.

Speakers

Thomas Van Boeckel, ETH: Mapping the global consumption of antimicrobials in animals and humans

Silke Hickmann, UBA: The global perspective on pharmaceuticals in the environment—results of a global monitoring database and overview on the discussion of the issue under SAICM

Jason Snape, AstraZeneca: An industry approach to safe API manufacturing discharges and its implementation across the supply chain

Mike Williams, CSIRO: An examination of ecological risk factors for APIs based on national income

Norihide Nakada, Kyoto University: Monitoring of pharmaceuticals in the aquatic environment of Asian countries and factors relating to their occurrence

Sunday 1 November

Daily Schedule and Business Meetings

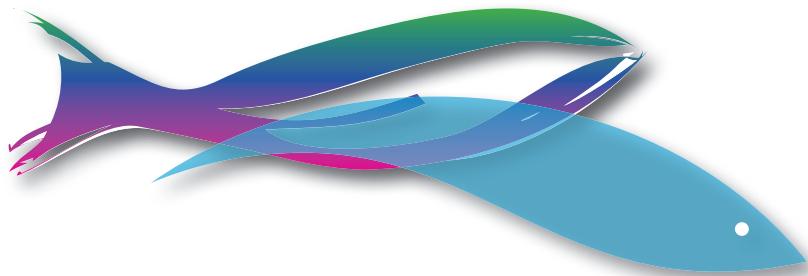
TIME	MEETING	LOCATION
7:00 a.m.–8:00 p.m.	Registration Open	East Registration
8:00 a.m.–5:00 p.m.	Professional Training Courses	see list below
8:00 a.m.–5:00 p.m.	North America Board of Directors	250 CF
9:00 a.m.–10:00 a.m.	Student Activities Committee	150 DE
9:20 a.m.–10:00 a.m.	Coffee Break	
	Lunch Break	
1:00 p.m.–5:00 p.m.	Hydrotopia: An Interactive Game for Environmental Education	250 AB
1:00 p.m.–5:00 p.m.	Pharmaceuticals Advisory Group Symposium (pre-registration required)	250 DE
3:00 p.m.–3:50 p.m.	Coffee Break	
4:00 p.m.–6:00 p.m.	Small Fish Research Team Meeting	151 G
6:00 p.m.–7:30 p.m.	Opening Ceremony featuring Lynn de Freitas	Ballroom ABCD
7:30 p.m.–9:30 p.m.	Opening Reception – Exhibitions and SETAC Store Open	Exhibit Hall

Professional Training Courses

FULL-DAY COURSES 8:00 a.m.–5:00 p.m.		LOCATION
PT01	Assessing Chemical Risks to Threatened and Endangered Species Using Population Models	251 C
PT02	Leadership 101: DiSC® Training. Evaluate Your Behavior, Strengths and Challenges, and Build Leadership Capacity	251 D
PT03	Pesticide Risk Assessment for Pollinators	251 E
PT04	The Endocrine System: Global Perspectives on Testing Methods and Evaluation of Endocrine Activity	251 F
PT05	Statistical Issues in the Design and Analysis of Ecotox Experiments	151 AB
PT06	Developing and Applying Adverse Outcome Pathways – What You Need to Know	151 DE
MORNING HALF-DAY COURSES 8:00 a.m.–12:00 p.m.		LOCATION
PT07	Hydraulic Fracturing: Data Analysis Tools to Evaluate Environmental and Ecological Risks	150 AB
PT08	Media and Communications Training for Environmental Scientists	151 G
PT09	Exposure and Risk Assessment for Formulated Consumer Products	150 G
AFTERNOON HALF-DAY COURSES 1:00 p.m.–5:00 p.m.		LOCATION
PT10	Science Communication: Using Science Improv to Communicate Science to Everyday People	150 G

SETAC PHOTO CONTEST

VOTE AT SETAC.ORG/SLC-PHOTO-CONTEST


- ▶ Submissions are on display in the SETAC Store.
- ▶ Winners will be announced Tuesday evening.
- ▶ Photos will be made available for bidding in the Silent Auction.

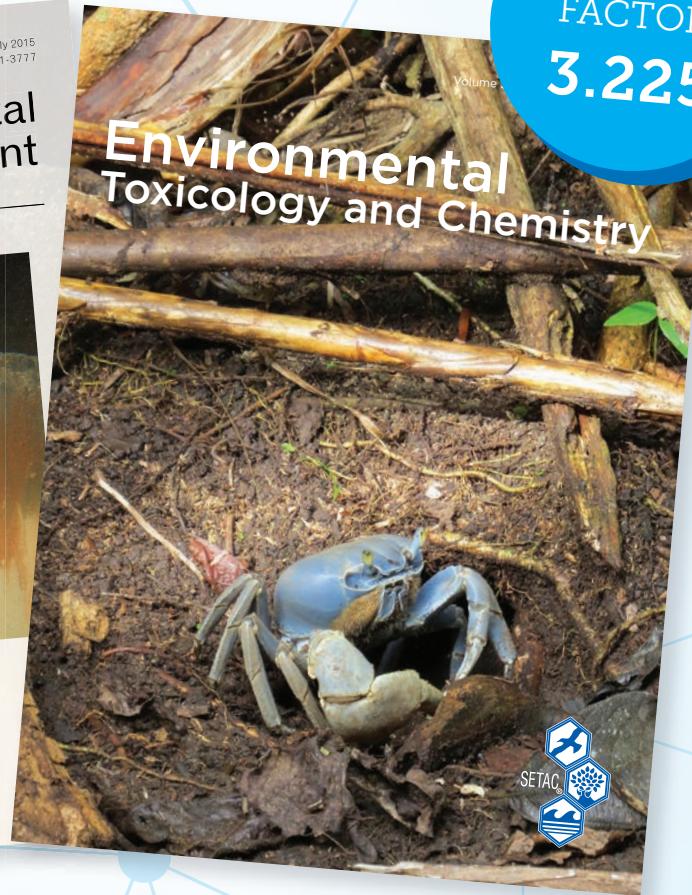
The presence of vitellogenin in male and juvenile fish serves as a useful biomarker for estrogenic activity of natural and anthropogenic substances in sewage.

Measure vitellogenin easily and repeatedly in epidermal fish mucus using:

TECO® Cyprinid Vitellogenin ELISA for Serum, Whole Body Homogenate & Mucus

TECO® Perch (Perciformes) Vitellogenin ELISA for Serum & Mucus

Non-invasive, easy sample collection


- Non-destructive, non-invasive sampling from epidermal mucosa
- Defined matrix without lymphatic fluid contamination
- Allows the use of smaller fish for testing and monitoring purpose
- Fewer fish for testing
- Repeated sampling allows for individual recording of the induction kinetic
- Preexposure enables determination of handling (stress) related impacts on Vitellogenin induction
- Comparison with Western Blot
- Significant cost saving

*Research Use Only in the
US & Canada*

ML-00-00181REV01

Diapharma Group, Inc.
1-800-526-5224
www.diapharma.com
info@diapharma.com

Submit Your Best Research to SETAC Journals!

Join us at the SETAC Journals
reception to learn more!

Monday, 2 November | 6:30–8:30 p.m. | Room 255A

Monday 2 November

General Opening Hours

TIME	AREA	LOCATION
7:00 a.m.–6:00 p.m.	Registration	East Registration
8:00 a.m.–6:30 p.m.	Poster Viewing and SETAC Store	Exhibit Hall
9:00 a.m.–6:30 p.m.	Exhibitions	Exhibit Hall

Daily Schedule

TIME	EVENT	LOCATION
7:00 a.m.–8:00 a.m.	Poster Setup	Exhibit Hall
7:00 a.m.–8:00 a.m.	New Member Breakfast	Room 254
8:00 a.m.–9:15 a.m.	Morning Platform Sessions	See session listing
9:00 a.m.–6:30 p.m.	Reddit Ask Me Anything	Exhibit Hall
9:15 a.m.–10:00 a.m.	Coffee Break	Exhibit Hall
10:00 a.m.–11:15 a.m.	Morning Platform Sessions cont'd	See session listing
11:15 a.m.–1:00 p.m.	Student/Mentor Lunch	255 DEF
11:15 a.m.–1:00 p.m.	Lunch Break	
1:00 p.m.–2:15 p.m.	Afternoon Platform Sessions	See session listing
2:15 p.m.–3:00 p.m.	Coffee Break	Exhibit Hall
3:00 p.m.–4:15 p.m.	Afternoon Platform Sessions cont'd	See session listing
4:30 p.m.–5:15 p.m.	Keynote Speaker: Jim Cane	Ballroom AC
5:00 p.m.–6:30 p.m.	Poster Social	Exhibit Hall
5:30 p.m.–8:00 p.m.	USEPA CSS STAR Grant Awards Kick Off Session	251 D
9:00 p.m.–until	Meet the President – Mary Reiley	Squatters Pub

Business Meetings

TIME	MEETING	LOCATION
9:00 a.m.–10:00 a.m.	International Programs Committee	250 CF
10:00 a.m.–11:00 a.m.	Southeast Regional Chapter	151 AB
11:30 a.m.–12:30 p.m.	Global Awards Committee	251 F
12:00 p.m.–1:00 p.m.	North America Science Committee	250 CF
12:00 p.m.–1:00 p.m.	North America Regional Chapters Committee	151 G
12:00 p.m.–2:00 p.m.	ET&C Editorial Luncheon	251 C
12:00 p.m.–2:00 p.m.	Plant Advisory Group Business Meeting	151 DE
1:00 p.m.–3:00 p.m.	Global Partners Committee	250 CF
2:00 p.m.–3:00 p.m.	YES 2016 Planning Committee	151 AB

Business Meetings cont'd

TIME	MEETING	LOCATION
3:00 p.m.–4:00 p.m.	Northern California Regional Chapter	151 DE
3:00 p.m.–5:00 p.m.	Exposure Modeling Advisory Group	151 G
5:00 p.m.–6:00 p.m.	Ozark-Prairie Regional Chapter	151 AB
6:00 p.m.–8:00 p.m.	Metals Advisory Group Meeting and Reception	253 AB
6:15 p.m.–7:15 p.m.	Post Docs and Recent Graduates Meeting	151 DE
6:30 p.m.–8:30 p.m.	SETAC Journals Reception Hosted by Wiley	255 A

SETAC Reddit Ask Me Anything (AMA) all day today!

The SETAC North America Student Advisory Council (NASAC) is hosting another Reddit Ask Me Anything (AMA). For those of you unfamiliar with Reddit AMAs, we open the floor to questions

from anyone in the world curious about our science. Questions have ranged from very explicit ("Should I be concerned about mercury levels in fish from the Chesapeake Bay?") to the very peculiar ("How dangerous is pigeon poop?"). Students work with experts and established researchers at the conference to answer these questions. The first AMA in SETAC Vancouver was very successful, but we're hoping it will be even bigger this year.

We are asking members of the society who represent researchers from a variety of disciplines and sectors to answer the questions; the answers are not official SETAC positions.

Meet the President!

Get to know your SETAC North America President
Mary Reiley
 Monday at 9:00 p.m.
 Squatters | 147 Broadway

Select sessions are being recorded at this meeting and will be available online for all attendees at **no additional cost**.

Look for the icon beside those sessions that are being recorded.

SETAC.sclivelearningcenter.com

Daily Keynote Speaker

4:30 p.m.-5:15 p.m. | Ballroom AC

Jim Cane

Researcher, US Department of Agriculture

Jim Cane has spent many of the past 27 years studying the nesting and pollination ecologies of native non-social bees of North America and elsewhere. In this keynote, he will discuss his long-term interest in conservation to help measure, understand and mitigate human factors that can shift nesting and foraging opportunities for bee communities. He has worked with pollination and pollinators of alfalfa, cranberries, blueberries, squashes, almonds, onions, raspberries

and 13+ native seed crops used for restoration seed. He has published on native bee nesting biologies, chemical ecologies, foraging ecologies, floral specializations, community dynamics and conservation. He is currently multiplying five species of native Osmia bees for these applications. For the past 14 years, he has worked for the US Department of Agriculture at the Pollinating Insect Research Unit at Utah State University. Prior, he was on the faculty of Auburn University in Alabama and a post-doc at Berkeley following a Ph.D. from the University of Kansas.

Save the date for TOMORROW's State of SETAC Address from 4:00 p.m.-5:00 p.m. in room 251 C as representatives from SETAC World and SETAC North America outline the state of our Society.

Follow SETAC on social media!

Like us on Facebook
[facebook.com/setacworld](https://www.facebook.com/setacworld)

Follow us on Twitter
[@setac_world](https://twitter.com/setac_world)
Use meeting hashtag [#setacslc](#)

Find us on LinkedIn

Affiliated Activity

5:30 p.m.-8:00 p.m. | Room 215 D

USEPA CSS STAR Grant Awards Kick Off Session

Systems Based Research for Evaluating Ecological Impacts of Manufactured Chemicals

The US Environmental Protection Agency (USEPA) is providing more than \$4 million to six universities for research to study the ecological impacts of manufactured chemicals, leading to better risk assessments and decisions for protecting environment and ecological system. "The innovative research funded by these STAR grants will provide new approaches to evaluate how exposures to chemicals influence the health of ecological systems, and how these approaches can be used to predict, prevent and mitigate these impacts in the long run," said Thomas A. Burke, USEPA's Science Advisor and Deputy Assistant Administrator of USEPA's Office of Research and Development. "This knowledge will help us more effectively protect the environment from adverse impacts of chemicals over time." The projects announced today will develop and apply innovative methods and models to better understand and predict the biological and ecological consequences of exposures to chemicals in environmental system.

Monday Morning Platform Presentations

	8:00-8:15	8:20-8:35	8:40-8:55	9:00-9:15
250 AB	Environmental Issues Surrounding the Great Salt Lake Lee Rawlings 1 Challenges in applying the Clean Water Act to the unique and variable Great Salt Lake <i>C. Bittner</i>	2 Circulation of water and salt between Gunnison and Gilbert Bays, Great Salt Lake by the railroad causeway: How much is enough? <i>E. Gaddis</i>	3 Factors Influencing Cyanobacteria Blooms in Farmington Bay, Great Salt Lake, Utah <i>B. Marden</i>	4 Macroinvertebrate Assemblages and the Health of Great Salt Lake Impounded Wetland Ponds <i>T. Miller</i>
250 DE	Making Science Matter: Effective Science Communication and Outreach Sarah Bowman, Sarah Crawford 9 Stakeholder engagement and feedback efforts to increase use of the iCSS ToxCast Dashboard <i>C. Baghdikian</i>	10 Making Science Matter for Congress: The SETAC NATSCA Reform Dialog Group <i>S. Cohen</i>	11 Sea grant programs of the Gulf of Mexico oil spill science and outreach: Communicating the impacts of the Deepwater Horizon oil spill <i>E. Maung-Douglass</i>	12 Biodegradation of Dispersed Oil <i>R. Prince</i>
251 AB	Complexity Kills the Minnow: How to Predict the Effects of Complex Mixtures Containing Multiple Stressors Heiko Schoenfuss, Brandon Armstrong, James Lazorchak 17 Effects of fungicide mixtures on growth and reproduction of the amphipod <i>Austrochiltonia subtenuis</i> <i>H. Vu</i>	18 A More Realistic Assessment of Toxic Effects from Storm Water: Organism Sensitivity to Pulsed Salinity, Pyrethroid Pesticide, and Copper Exposures <i>P. Arth</i>	19 Assessing the impact of urban-derived contaminants on freshwater mussels using indicators spanning multiple levels of biological organization <i>P. Gillis</i>	20 Altered aromatase expression in fathead minnow larvae following <i>in situ</i> exposure to an agrichemical pulse <i>J. Ali</i>
Ballroom AC	Human Exposures to Chemicals in Consumer Products Yvette Lowney 25 Assessing User Exposure to Consumer Products: Methods Specific to Product Use and Exposure Route to Assess Consumer Health Risks <i>P. Sheehan</i>	26 California's Safer Consumer Products Program's Approach to Chemical Exposure Assessment <i>A. Doherty</i>	27 Integrating Near-Field Sources and Pathways into Overall Exposure Modeling of Chemicals in Consumer Products <i>P. Fantke</i>	28 Chlorinated Volatile Organics in Indoor Air from Consumer Products <i>W. Doucette</i>
Ballroom B	Advances in National-Level Data for Risk Assessment of Pesticides to Federally Listed Threatened and Endangered Species Chairs: ----- 33 Inclusion of multiple stressors in determinations of pesticide risk to threatened and endangered species <i>C. Laetz</i>	34 A refined risk assessment for Kirtland's warbler potentially exposed to flowable chlorpyrifos in the United States <i>D. Moore</i>	35 Assessment of risks of diazinon to the Kirtland's warbler <i>K. Garber</i>	36 Endangered species assessment for the shortnose sturgeon: lessons learned for a national assessment process <i>M. Winchell</i>
Ballroom D	Wildlife Ecotoxicology: Molecular to Community Effects John Elliott, Nico van den Brink, Miguel Mora 41 Proportions of parasites, malformations and tumors in birds are higher in sites exposed to metal pollution at semiarid shrublands of central Mexico <i>L. Chapa</i>	42 Fluoride pollution and marsupials: pathology, spatial epidemiology and bioindicators <i>C. Death</i>	43 Spatial and temporal mercury trends in seabird eggs from Pacific Canada 1968-2012 are due to diet: evidence from sulfur isotopes <i>J. Elliott</i>	44 Impacts of run-of-river hydropower on food web structure and mercury bioaccumulation in American dippers of coastal British Columbia <i>V. Norbury</i>
Ballroom E	Fate and Effects of Metals: BLM and Mechanisms of Metals Toxicity Bill Stubblefield 49 Development of BLM-based Ambient Water Quality Criteria for Nickel following USEPA Guidelines <i>D. DeForest</i>	50 A review of the bioavailability and toxicity of nickel to aquatic organisms in acute and chronic exposures <i>R. Santore</i>	51 Development of a marine biotic ligand model for nickel: effect of dissolved organic carbon on Ni toxicity to early life stages in marine invertebrates <i>T. Blewett</i>	52 Physiological Responses of Coral Reef Organisms to Ocean Acidification and Copper Exposure <i>G. Bielmyer</i>
Ballroom F	Alternative Approaches for Ecotoxicity Assessments Teresa Norberg-King, Scott Belanger, Amy Beasley 57 Developmental Effects of 2-hydroxychrysene in Zebrafish (<i>Danio Rerio</i>) Embryos <i>G. Diamante</i>	58 Leveraging Embryonic Zebrafish to Prioritize ToxCast Testing <i>D. Volz</i>	59 The fathead minnow embryo as an alternative fish species for assessing fish embryo toxicity and teratogenicity <i>S. Böhler</i>	60 Sample Size Analysis for Acute Toxicity Tests: Size Matters <i>G. Carr</i>
Ballroom G	Discovering the Causes of Chronic Diseases: Integrating Systems Toxicology and the Exposome Anthony Macherone 65 Strategies to measure the exposome <i>A. Macherone</i>	66 Environmental Determinants of Disease Susceptibility <i>S. Snyder</i>	67 Using "omics" medical information systems and a biorepository "time machine" to "PREDICT" the development of chronic diseases in children. <i>D. Graham</i>	68 High-resolution metabolomics study of occupational exposure to trichloroethylene <i>D. Walker</i>
Ballroom H	Recent Advances and Trends in Perfluorochemical Research Jinxia Liu, Kavitha Dasu, Shoji Nakayama, Marc Mills 73 Aqueous photolysis of a fluorotelomer surfactant used in aqueous film forming foams <i>L. Troubost</i>	74 Aerobic soil biotransformation of quaternary ammonium fluorinated surfactants generates perfluoroalkyl acids <i>S. Mejia</i>	75 Aerobic biodegradation potential of fluorinated surfactants, polyfluoroalkyl phosphates (PAPs) <i>K. Chu</i>	76 Metabolic Pathway Elucidation and Protein Binding of Perfluoroalkyl Phosphonic and Phosphinic Acids (PFPA, PFPIAs) in Rats <i>S. Joudan</i>
Ballroom I	Plant Contaminant Interactions William Doucette, Joel Burken 81 Patterns of Radiolabelled Selenium Accumulation, Translocation and Speciation in Selected Plants for Phytoremediation and Biofortification <i>D. Vinod</i>	82 Ion selectivity and isotope effects during plant uptake and accumulation of perchlorate and nitrate <i>N. Estrada</i>	83 Bioaccumulation Behavior of Ionogenic Organic Contaminants in Wetland Plants: results of a controlled mesocosm study <i>Y. Wang</i>	84 The Role of Dissipation Processes in Plants for Modeling Bioaccumulation <i>P. Fantke</i>
Ballroom J	Fostering Tripartite Research: Perspectives, Opinions and New Approaches Mark Hanson, Richard Frank, Richard Brain 89 Strengthening Science-based Cooperation <i>G. Arts</i>	90 Sustaining the SETAC Brand: Experiences with SETAC's Public Outreach Policy <i>J. Staveley</i>	91 Building Environmental Programming through Tripartite Representation: Successes and Challenges <i>W. Goodfellow</i>	92 Experiences with Multi-sector Research Collaboration: An Industry View <i>L. Ortego</i>
Track	Aquatic Toxicology and Ecology	Integrated Env Assessment and Management	Environmental or Analytical Chemistry	Linking Science and Social Issues

Monday Morning Platform Presentations

10:00-10:15		10:20-10:35		10:40-10:55		11:00-11:15			
Environmental Issues Surrounding the Great Salt Lake Lee Rawlings									
5 Trace metals in Great Salt Lake wetlands and potential impacts on plant community health <i>G. Carling</i>		6 Can Alternative Management Strategies for Impounded Wetland Waterfowl Habitat Mitigate Chemical Stressors? <i>H. Hoven</i>		7 Unionoida mussels and non prosobranch snails in the Jordan River drainage, UT in response to USEPA's ammonia criteria revisions <i>D. Richards</i>		8 Understanding Nitrogen Dynamics and Organic Matter Sources in the Jordan River <i>R. Goel</i>			
Making Science Matter: Effective Science Communication and Outreach Sarah Bowman, Sarah Crawford									
13 Transdisciplinary Approaches to Environmental Science Education: A Case Study from Northern Saskatchewan, Canada <i>M. Cavallaro</i>		14 Scientific Communication in the Environmental Sciences – It is a Different World <i>R. Sofield</i>		15 Tox on Tap: A public science initiative <i>L. D'Silva</i>		16 Students of SETAC: Connecting students on a global level through social media <i>D. Jevtic</i>			
Complexity Kills the Minnow: How to Predict the Effects of Complex Mixtures Containing Multiple Stressors Heiko Schoenfuss, Brandon Armstrong, James Lazorchak									
21 Acute and Chronic Effects of Diltiazem in the Fathead Minnow (<i>Pimephales promelas</i>) across Dissolved Oxygen Gradients <i>G. Saari</i>		22 Contribution of PAHs to the teratogenicity of bioavailable Superfund mixtures <i>A. Bergmann</i>		23 Confirming bioretention effectiveness for treatment of urban stormwater runoff using molecular indicators of cardiovascular toxicity <i>J. McIntyre</i>		24 Assessment of Chemical and Pathogen Risks at an Urban River <i>B. Ruffle</i>			
Human Exposures to Chemicals in Consumer Products Yvette Lowney									
29 Deterministic Exposure Assessment of Ingredients Used in Consumer Cleaning Products in the United States <i>S. Williams</i>		30 Human Health Risk Assessment of Chloroxylenol in Liquid Hand Soap and Dishwashing Soap Used by Consumers and Health-Care Professionals <i>L. Yost</i>		31 Asthma Hazard Characterization and Exposure Assessment Approaches for Evaluation of Consumer Product Ingredients <i>A. Maier</i>		32 Consequences of Azo Dye Exposure on Clostridium perfringens: Human and Environmental Risks <i>J. Morrison</i>			
<----- Title Bernalyn McGaughey, Tilghman Hall, George Tuttle, R. Scott Teed, Teung Chin, Kat Maybury									
37 National-level endangered species assessment for chlorpyrifos: aquatic species <i>J. Giddings</i>		38 National Endangered Species Assessment for Chlorpyrifos: Refined Terrestrial Ecological Risk Assessment <i>R. Teed</i>		39 Reducing pesticide exposure to threatened and endangered species <i>S. Hecht</i>		40 Targeted Monitoring to Evaluate the Effectiveness of Streamside Vegetation in Reducing Pesticide Loading to Surface Water <i>G. Tuttle</i>			
Wildlife Ecotoxicology: Molecular to Community Effects John Elliott, Nico van den Brink, Miguel Mora									
45 Can ingestion of lead shot and poisons change population trends of three European upland birds: grey partridge, common buzzard, and red kite? <i>C. Meyer</i>		46 Sub-lethal effects of neonicotinoid pesticides on wood frogs (<i>Lithobates sylvaticus</i>) - Mesocosm Exposures <i>S. Robinson</i>		47 Embryonic development and hatching success in American Kestrels exposed to the brominated flame retardant, TBBPA-BDBPE <i>P. Henry</i>		48 Hepatic transcriptomic profiling of double-crested cormorants collected from variably contaminated breeding colonies of the Great Lakes <i>D. Crump</i>			
Fate and Effects of Metals: BLM and Mechanisms of Metals Toxicity Bill Stubblefield									
53 Site specific toxicity of rare earth elements in the aquatic environment <i>J. McGeer</i>		54 Using saturation kinetics-based models to predict <i>Hyalella azteca</i> mortality in chronic zinc exposures <i>L. Wilkinson</i>		55 Can metals bound to assimilable ligands be taken up by phytoplankton? <i>F. Liu</i>		56 Metal (Ni, Cd and Tl) binding to cytosolic ligands in insects (<i>Chaoborus punctipennis</i>) and eels (<i>Anguilla rostrata</i>) as determined by SEC-ICPMS <i>M. Rosabal</i>			
Alternative Approaches for Ecotoxicity Assessments Teresa Norberg-King, Scott Belanger, Amy Beasley									
61 RTgill-W1 cell line assay for predicting fish acute toxicity: evaluation of a round-robin test <i>M. Bernhard</i>		62 Ecological Threshold of Toxicological Concern – Fundamentals and Initial Findings from a Comprehensive Assessment of More Than 4000 Chemicals <i>S. Belanger</i>		63 Shell's Animal Testing Strategy: Fish Testing <i>C. Meyer</i>		64 The Regulatory Framework for Read-across and Surrogate Use for Hazard Assessment <i>J. Kneeland</i>			
Discovering the Causes of Chronic Diseases: Integrating Systems Toxicology and the Exposome Anthony Macherone									
69 Developmental neurotoxicity assessment of chemical mixtures in children <i>P. Leonards</i>		70 Influence of Selected Trace Metals on Blood FSH, LH, E2 and Prolactin levels in Women with Infertility attending University College Hospital, Nigeria <i>J. Omotosho</i>		71 Speciated Isotope Dilution Mass Spectrometry Enabling Exposomic Assessment of Children with Autism and Potential Predictive and Diagnostic Testing <i>S. Kingston</i>		72 Mapping Pathways of Toxicity by systems toxicology: The Human Toxome project <i>M. Bouhifd</i>			
Recent Advances and Trends in Perfluorochemical Research Jinxia Liu, Kavitha Dasu, Shoji Nakayama, Marc Mills									
77 In Situ Remediation of Perfluoroalkyl Contaminated Groundwater: Combined Sorption and Oxidation <i>M. Crimi</i>		78 Analysis of PFAAs in Water using Differential Mobility Spectrometry-Mass Spectrometry <i>K. Hyland</i>		79 Assessing the Environmental Hazards of and Exposure to Long-overlooked Perfluoroalkyl Phosphonic and Phosphinic Acids (PFPAAs and PFPIAs) <i>Z. Wang</i>		80 Serum Perfluoroalkyl Substances Concentration in South Korean Infant with Congenital Hypothyroidism <i>D. Kim</i>			
Plant Contaminant Interactions William Doucette, Joel Burken									
85 Fate and Metabolism of 2,4-Dinitroanisole in Willow Trees <i>H. Schroer</i>		86 Mixture Effects on Uptake of Pharmaceuticals and Personal Care Products by <i>Arabidopsis thaliana</i> <i>S. Nason</i>		87 Tree Diameter and Rooting Morphology Impacts on Phytoscreening for Vapor Intrusion Potential <i>J. Wilson</i>		88 Tree Properties Influence on in-plant Contaminant Concentrations at Field Sites <i>J. Burken</i>			
Fostering Tripartite Research: Perspectives, Opinions and New Approaches Mark Hanson, Richard Frank, Richard Brain									
93 Fostering tripartite research: success stories from Europe <i>V. Forbes</i>		94 Improving Weight of Evidence for Regulatory Decision-Making: A SETAC Tripartite Perspective <i>P. Guiney</i>		95 Key cooperations – The influence of Kloas et al. 2009, <i>Toxicological Sciences</i> 107 on ecological risk assessment of atrazine <i>K. Solomon</i>		96 The Tripartite Experience in Regulatory Risk Assessment: Reflections From Over 20 Years as a Consultant <i>D. Moore</i>			
Regulatory Directions		Remediation/Restoration		Special Symposia		Terrestrial or Wildlife Toxicology and Ecology			
Track		Ballroom J		Ballroom I		Ballroom H		Ballroom G	
250 AB		250 DE		250 AC		251 AB		Ballroom B	

Presentation will not be recorded.

Monday Afternoon Platform Presentations

	1:00-1:15	1:20-1:35	1:40-1:55	2:00-2:15
250 AB	Environmental or Analytical Chemistry General - Part 1 Measurements Miriam Diamond, Liisa Jantunen 97 Assessing Human Exposure to Toxic VOCs: Comparison of Smoke Biomarkers from Blood and Urine Using Data from NHANES 2005-06 <i>J. Rasio</i>	98 Internal exposure levels of halogenated persistent organic pollutants (Hal-POPs) in children with and without asthma- A case-control study <i>M. Ge</i>	99 Arsenic Speciation in Sediment and Seafood from Oilfield-Contaminated U.S. Gulf Coast Ecosystems <i>K. Webb</i>	100 Harmful metal pollution in roof deposit materials caused by air transportation <i>H. Ozaki</i>
250 DE	The Future Scientists of SETAC: Conveying Scientific Information in the Classroom 104 Something from Nothing: Development of Undergraduate and Graduate Environmental Science Curricula <i>R. Grippa</i>	105 The Future Scientists of SETAC: The Classroom - Field Class - Study Abroad Connection <i>C. Howard</i>	106 Teaching Introductory Environmental Toxicology <i>C. Isaacson</i>	107 Classroom-based research laboratories: Engaging undergraduates in environmental toxicology <i>A. Roberts</i>
251 AB	Integrated and Predictive Methods for Assessing the Presence and Potential Impacts of Contaminants of Emerging Concern Chairs: ----->			
Ballroom AC	112 A Multi-Agency Effort for Assessing the Occurrence and Biological Impacts of CECs in Support of the Great Lakes Restoration Initiative <i>D. Ekman</i>	113 Co-occurrence Patterns for Contaminants of Emerging Concern in Tributaries to the Laurentian Great Lakes <i>M. Brigham</i>	114 Organic Contaminants in Great Lakes Tributaries: Watersheds and Chemicals of Greatest Concern <i>S. Corsi</i>	115 A survey of resident and caged sunfish in Great Lakes tributaries for effects consistent with exposure to contaminants of emerging concern <i>H. Schoenfuss</i>
Ballroom B	Pollinators and Agrochemicals Michelle Hladik, Paul Reibach			
Ballroom D	120 Tracking seasonal and regional changes of pesticides in bee-collected nectar and pollen in urban and suburban environments <i>Z. Huang</i>	121 Analysis of Pesticides in MG Quantities of Important Pollinator Matrices <i>R. Smith</i>	122 The Evaluation of Modifications of Methods and Equipment Towards Improvement of the OECD Draft 22-Day Repeat Exposure Larval Honey Bee Methods <i>M. Patnaude</i>	123 Developing laboratory test methods for evaluating toxicity to solitary bees (<i>Osmia</i> spp.) <i>S. Hinarejos</i>
Ballroom E	Assessing Risks of Pesticides to Federally Listed (Threatened and Endangered) Species at a National Level Amy Blankinship, Cathy Laetz, Nancy Golden			
Ballroom F	128 Setting the Stage: Overview of the Ecological Risk Assessment Process under the ESA and FIFRA <i>K. Myers</i>	129 Using Data Compiled by FESTF to Support a National Endangered Species Assessment Case Study on Organophosphate Insecticides <i>A. Frank</i>	130 Use of toxicological data in the assessment of pesticide risk to threatened and endangered species <i>G. Noguchi</i>	131 Use of species sensitivities distributions and species grouping strategies in national-level endangered species risk assessments <i>A. Blankinship</i>
Ballroom G	Dealing With Bias in Chemical Risk Assessment Valery Forbes, Tilghman Hall, Glenn Suter			
Ballroom H	136 We are all biased - that is why we need science in risk assessment - but it can do a better job <i>P. Calow</i>	137 Bias in Developing Health and Ecological Assessments and Potential Solutions <i>S. Cormier</i>	138 Compliance with Good Laboratory Practices (GLP) Does Not Guarantee Study Quality <i>J. Staveley</i>	139 Biased Data and Potential Solutions for Health and Environmental Assessments <i>G. Suter</i>
Ballroom I	Fate and Effects of Metals: Aquatic Biological Perspectives Robert Dwyer			
Ballroom J	144 Chronic effects of lead to topsmelt fish (<i>Atherinops affinis</i>) <i>E. Reynolds</i>	145 Subchronic toxicity of platinum group elements as determined with the standardized toxicity test (ISO 10872) using the nematode <i>Caenorhabditis elegans</i> <i>G. Schertzinger</i>	146 Toxicity ameliorating effects of cations and dissolved organic carbon on Thulium toxicity to <i>Hyalella azteca</i> <i>A. Loveridge</i>	147 Fate of Arsenate (AsV) and its effect on the biomarkers of an aquatic macrophyte <i>Myriophyllum alterniflorum</i> in eutrophic and oligotrophic conditions <i>M. Krayem</i>
Ballroom K	Terrestrial or Wildlife Toxicology and Ecology General Ben Barst			
Ballroom L	152 Seasonal differences in the accumulation of polybrominated diphenyl ethers (PBDEs) in migratory and resident songbirds of North and Central America <i>A. Maldonado</i>	153 Survey of Aflatoxin Contamination in Supplemental Wildlife Corn Feed Sampled throughout the Rolling Plains of Texas <i>N. Dunham</i>	154 Implications of study design in long-term environmental contaminants monitoring <i>W. Bowerman</i>	155 Source-sink dynamics of bald eagles in Michigan's Great Lakes ecosystem <i>K. Simon</i>
Ballroom M	Biomonitoring of Human Exposure Assessment to Xenobiotics Qian Wu, Alexandros Asimakopoulos			
Ballroom N	158 Association between multi-class xenobiotics exposures and oxidative stress in a population in Saudi Arabia <i>A. Asimakopoulos</i>	159 A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols via indoor dust ingestion in twelve countries <i>W. Wang</i>	160 Cadmium in Human Urine from an E-Waste Recycling, China and Its Associations with Biomarkers of Oxidative Stress in Local Residents <i>T. Zhang</i>	161 Measurements of urinary phthalate metabolites in California nail salon workers and comparison to a representative sample of the U.S. population <i>J. Varshavsky</i>
Ballroom O	Advancements in the Field of Passive Sampling: Unique Applications and Novel Developments - Part 1 Jonathan Challis, David Alvarez			
Ballroom P	166 Actively shaken in situ passive sampler for measuring pore water concentrations of hydrophobic organic compounds <i>M. Jalalizadeh</i>	167 Monitoring of PAHs with Low Density Polyethylene Films at Two Contrasting Surface Water Sites and Approach for Estimating Sampler Uptake and Kinetics <i>H. Lord</i>	168 Passive water sampling predicts PAH contamination in signal crayfish, <i>pacifastacus leniusculus</i> <i>L. Paulik</i>	169 Using passive samplers to improve soil pollutant biodegradation assessments <i>D. Werner</i>
Ballroom Q	Difficult Substances - Methods and Approaches for Risk Assessment Frank Gobas, Philip Leber, Paul DeLeo, Karen Eisenreich, Duane Huggett, Anne Kim			
Ballroom R	174 Proceedings from a Collaborative Workshop Discussing Challenges in Characterizing Hazard Associated with Difficult-to-Test Substances <i>K. Eisenreich</i>	175 Proceedings from a Collaborative Workshop Discussing Challenges in Characterizing Hazard Associated with Difficult-to-Test Substances - Part 2 <i>P. DeLeo</i>	176 What's the Functional Solubility? The challenges and limitations faced when working with Difficult to Test Substances in aquatic matrices <i>M. Cafarella</i>	177 Along came a SPDR: A novel approach to creating truly dissolved solutions for use in flow-through toxicity testing <i>B. de Jourdan</i>
Ballroom S	Novel Mechanisms of Nanomaterial Toxicity Through Direct Exposure and/or Indirect Interactions with Environmental Constituents Chairs: ----->			
Ballroom T	182 Cardiovascular toxicity of nanoparticles to zebrafish (<i>Danio rerio</i>) embryos <i>J. GAO</i>	183 Interference of silver nanoparticles with essential metal homeostasis in a multi-cellular fish <i>in vitro</i> system <i>M. Minghetti</i>	184 Mechanisms of cellular uptake and sub-cellular localization of nanoparticles <i>G. Goss</i>	185 Multi-Walled Carbon Nanotubes Alter Toxicities of Diphenhydramine and Diclofenac in Exposures with Sediment and Natural Organic Matter <i>M. Black</i>
Track	Aquatic Toxicology and Ecology	Integrated Env Assessment and Management	Environmental or Analytical Chemistry	Linking Science and Social Issues

Monday Afternoon Platform Presentations

3:00-3:15	3:20-3:35	3:40-3:55	4:00-4:15	
Environmental or Analytical Chemistry General - Part 1 Measurements Miriam Diamond, Liisa Jantunen				
101 Identification of inorganic sources of Houston road dust contamination <i>M. Fiala</i>	102 Perfluorinated octane acid (PFOA) and Perfluorinated octane sulphonate (PFOS) in top soil of some high density residential areas <i>B. Ximba</i>	103 Determination of levels of polychlorinated biphenyls (PCBs) present in caulk and window glazing material samples from older buildings <i>L. Osemwengie</i>	Discussion	
The Future Scientists of SETAC: Conveying Scientific Information in the Classroom David Ownby, Ruth M. Sofield				
108 Impacts of new teaching, monitoring and reporting techniques on science student success from the perspective of faculty, students and administration <i>F. Bailey</i>	109 PowerPoint in Biology Classrooms: A Quantitative Analysis of Student and Faculty Perceptions <i>R. Otter</i>	110 An online alternative to in-class journal article discussions <i>D. Ownby</i>	111 Environmental Toxicology and Active Learning - The Trials and Tribulations of Trying New Approaches in a Learning Environment <i>R. Sofield</i>	
<----- Title Jo Banda, Heiko Schoenfuss, Edward Perkins				
116 Transcriptional Pathway and de novo network-based approaches to effects-based monitoring in the Great Lakes <i>N. Vinas</i>	117 Characterizing the Bioactivity of Complex Environmental Samples Using High Throughput Toxicology <i>A. Schroeder</i>	118 Contaminants of emerging concern detected in effluent, estuarine water, and fish in Puget Sound, Washington, USA <i>J. Meador</i>	119 Tidal Influences on Aquatic Hazards of Pharmaceuticals, Nutrients, and Pathogens in Dickinson Bayou, Texas, USA <i>W. Scott</i>	
Pollinators and Agrochemicals Michelle Hladik, Paul Reibach				
124 Chloryprifos and honeybees: Threshold values for sub-lethal memory and learning effects relative to measured amounts in New Zealand honeybees <i>K. Hageman</i>	125 Distribution of neonicotinoids in the honeybee colony and its significance for risk assessment <i>J. Purdy</i>	126 Current-use pesticides in native bees collected in 2013 and 2014 from varying land cover areas in Colorado, USA <i>M. Hladik</i>	127 Longitudinal Analysis of Honey Bee Colony Strength and Survival as a Function of Exposure to Pesticides, Pathogens, and Varroa Mites <i>S. Kegley</i>	
Assessing Risks of Pesticides to Federally Listed (Threatened and Endangered) Species at a National Level Amy Blankinship, Cathy Laetz, Nancy Golden				
132 A Weight-of-Evidence Approach for Making Effects Determinations for Federally Listed Species and Pesticides <i>N. Golden</i>	133 Aquatic Modeling to Estimate Pesticide Exposure to Threatened and Endangered Species <i>M. Corbin</i>	134 Probabilistic modeling to account for spatial and temporal variability in aquatic pesticide concentrations for endangered species risk assessments <i>L. Padilla</i>	135 On-going Improvements to the AGDISP Pesticide Drift Model <i>H. Thistle</i>	
Dealing With Bias in Chemical Risk Assessment Valery Forbes, Tilghman Hall, Glenn Suter				
140 A Tale of Two Scientific Worlds : a case study with Bisphenol A (BPA) <i>L. Ortego</i>	141 Industry sponsored; implications of collaborative research <i>R. Brain</i>	142 Improved understanding through collaboration - European initiatives encouraging interaction between academia and regulators <i>M. Agerstrand</i>	143 Identifying Conditions for the Legitimacy of Industry Funded Research <i>K. Elliott</i>	
Fate and Effects of Metals: Aquatic Biological Perspectives Robert Dwyer				
148 Dynamic behavior and speciation of arsenic at the base of aquatic food webs <i>A. Harris</i>	149 New findings on mercury neurotoxicity disclosed by oxidative stress profiles in fish brain upon exposure to inorganic and organic mercury forms <i>P. Pereira</i>	150 Effects of food additions on toxicity of inorganic and methyl mercury to <i>Daphnia magna</i> <i>C. Hylton</i>	151 Exposure to pollutants in Madín Reservoir (Mexico) induce cyto and genotoxic effects in the common carp <i>Cyprinus carpio</i> <i>C. Martínez-Vieyra</i>	
Terrestrial or Wildlife Toxicology and Ecology General Ben Barst				
156 A geographic survey of mercury levels in bats across Canada <i>J. Chetelat</i>	157 Development of Risk-based Thresholds for Molybdenum in Soil <i>B. Sample</i>	Discussion	Discussion	
Biomonitoring of Human Exposure Assessment to Xenobiotics Qian Wu, Alexandros Asimakopoulos				
162 Determination of secondary DEHP metabolites, PFOS and PFOA in breast milk and cord plasma samples from European birth cohorts <i>M. Lamoree</i>	163 Blood Metal Concentrations in Newcomer Women in Toronto, Canada <i>C. Wiseman</i>	164 Factors affecting partitioning of halogenated aromatic hydrocarbons among maternal blood, placenta, and cord blood <i>J. Kim</i>	165 Passive sampling in ambient and individuals' environments in rural Peru <i>A. Bergmann</i>	
Advancements in the Field of Passive Sampling: Unique Applications and Novel Developments - Part 1 Jonathan Challis, David Alvarez				
170 Polyethylene uptake of gaseous and dissolved hydrophobic organic contaminants <i>C. McDonough</i>	171 Comparison of two methods commonly used to calculate air concentrations of semi-volatile organic compounds from passive sampler measurements <i>E. Holt</i>	172 Hydrophobicity driven sorption of neutral and anionic surfactants to solid-phase microextraction fibers <i>J. Haftka</i>	173 Equilibrium sampling for a thermodynamic assessment of contaminated sediments <i>P. Mayer</i>	
Difficult Substances - Methods and Approaches for Risk Assessment Frank Gobas, Philip Leber, Paul DeLeo, Karen Eisenreich, Duane Huggett, Anne Kim				
178 Degradation Testing of Fluorotelomer-based polymers (FTPs) <i>L. Libelo</i>	179 Challenges in aquatic toxicity testing of Gas-to-Liquid products <i>D. Lyon</i>	180 Scientific rationale for the evolution of criteria for PBT and POP and cut-off values in national and international regulatory tools <i>K. Solomon</i>	181 The Problem with Super-Hydrophobic Chemicals <i>F. Gobas</i>	
<----- Title Joseph Bisesi, Candice Lavelle, Tara Sabo-Attwood, Lee Ferguson				
186 Photo-induced Toxicity and Interaction of Titanium Dioxide (TiO ₂) Nanoparticles with Natural Organic Matter (NOM) in Aquatic Systems <i>A. Wormington</i>	187 Toxicogenomic responses of <i>Medicago truncatula</i> to aged biosolids containing nanomaterials (TiO ₂ , Ag and ZnO) from a pilot wastewater treatment plant <i>O. Tsusyko</i>	188 Defining biomarkers for functionalized gold nanoparticle induced adverse outcomes <i>J. Bozich</i>	189 Release of Polymer Additives and Plasticizers from CNT-polymer Nanocomposites <i>M. Montano</i>	
Regulatory Directions		Remediation/Restoration	Special Symposia	Terrestrial or Wildlife Toxicology and Ecology
				Track
				Ballroom J
				Ballroom I
				Ballroom H
				Ballroom G
				Ballroom F
				Ballroom E
				Ballroom D
				Ballroom C
				Ballroom B
				Ballroom AC
				Ballroom B
				250 DE
				250 AB

 Presentation will not be recorded.

Monday Poster Presentations

Schedule

Setup 7:00 a.m.–8:00 a.m.

Take Down 6:30 p.m.–6:45 p.m.

Presenters are expected to attend their poster during all break periods and evening poster social to discuss their work with scientists visiting their poster.

Coffee Breaks 9:15 a.m.–10:00 a.m. and 2:15 p.m.–3:00 p.m.

Lunch Break 11:15 a.m.–1:00 p.m.

Poster Social 5:00 p.m.–6:30 p.m.

Biomonitoring of Human Exposure Assessment to Xenobiotics

Oian Wu, Alexandros Asimakopoulos

MP001 Analysis of Perfluoroalkyl Substances in Food, Drinking Water, and Indoor Dust from New York State and the Assessment of Human Exposure | *O. Wu*

MP002 Mercury (Hg) exposure and its influence on the neurodevelopment of Saudi breast-fed infants | *J. Al-Saleh*

MP003 Organophosphorus and brominated flame retardants in human breast milk from Japan | *T. Kunisue*

MP004 Temporal trend of PBDEs in Northern California pregnant women | *E. Parry*

MP005 Biomonitoring of Newcomer Women from South and East Asia in Two Canadian Cities | *M. Curren*

MP006 Associations of Serum Organohalogen Levels and Prostate Cancer Risk: Results from a case-control study in Singapore | *B. Kelly*

Advancements in the Field of Passive Sampling: Unique Applications and Novel Developments | Jonathan Challis, David Alvarez

MP007 Demonstration project using a modified POCIS for monitoring emerging contaminants in a groundwater well | *D. Alvarez*

MP008 Why Aren't We Using Passive Sampling More Often? – The End-user Perspective | *J. Conder*

MP009 Comparisons of Discrete and Passive Sampling for Quantitation of Pulsed Exposures to Aquatic Organisms | *S. Morrison*

MP010 Using Performance Reference Compounds (PRCs) to measure dissolved water concentrations (Cfree) in the water column: Assessing equilibrium models | *A. Joyce*

MP011 Emerging Organic Pollutants in surface waters in Costa Rica: a first assessment of pollution level using passive sampling | *A. Ledezma*

MP012 Guidance on using Passive Sampling in Evaluation of Contaminated Sediments and Integration into Management of Contaminated Sediment Sites | *S. Kane Driscoll*

MP013 Using Passive Samplers to Monitor Contaminant Transport in a PCB-Contaminated Estuary | *M. Benotti*

MP014 Assessing Recovery, Transport, and Stability for Over 160 Compounds in Silicone Personal Passive Samplers | *S. O'Connell*

MP015 Organophosphate flame retardants: Calibration and uptake by passive air samplers (GAPS) | *L. Jantunen*

MP016 Stability of Polycyclic Aromatic Compounds in Polyurethane Foam-type Passive Air Samplers upon O3 Exposure | *N. Jariyasoip*

MP017 Volatile Losses of Compounds from POM and PDMS Study in Passive Sampling | *S. Yan*

MP018 Critical micelle concentrations for different surfactants measured with polyacrylate-coated SPME fibers | *J. Haftka*

MP019 Exploring right hand coiled coil (RHCC) proteins as a matrix for a new passive sampling device for PAHs | *V. Palace*

MP020 Silicone wristbands detect an individual's pesticide exposures in Africa | *C. Donald*

MP021 Application of passive sampling technique for monitoring 64 pesticides in surface water in Japan | *Y. Kameda*

MP022 Passive sampling technique combined with ELISA assay detection for monitoring neonicotinoid insecticides in surface water in Japan | *Y. Kameda*

MP023 Screening of Halogenated Organic Pollutants in Waste Water Treatment Plants using Passive Sampling and High Resolution Mass Spectrometry | *M. Robson*

Integrated and Predictive Methods for Assessing the Presence and Potential Impacts of Contaminants of Emerging Concern | Jo Banda, Heiko Schoenfuss, Edward Perkins

MP024 Assessing potential endocrine disrupting effects of municipal effluents on fathead minnow (*Pimephales promelas*) populations in Southern Saskatchewan | *S. Hanson*

MP025 Characterization of the endocrine potencies of municipal effluents across Canada using *in vitro* bioassays | *T. Bagatim*

MP026 Chemical-Gene Interaction Networks for Biological Effects Prediction and Prioritization of Contaminants for Environmental Monitoring and Surveillance | *A. Schroeder*

MP027 Emerging and Conventional Contaminants Discharging into the Dnieper River, Kyiv, Ukraine | *R. Burgess*

MP028 Evaluating Impacts of Pulp and Paper Mill Process Changes on Bioactive Contaminant Loading to the St. Louis River, Duluth, MN | *M. Kahl*

MP029 Life After COPCs: Emerging" Contaminants and Their Potential Role at Superfund Sediment Sites" | *R. Gensemer*

MP030 Muddy Waters: The role of sediment in CEC fate, transport and bioavailability | *A. Kolok*

MP031 Reproductive and histopathological effects of municipal wastewater effluent exposure in male and female fathead minnows | *K. Steeves*

MP032 Sucralose in wastewater effluent and receiving waters in the U.S.: an environmental exposure assessment | *K. Kapo*

MP033 Time course of hepatic gene expression and plasma vitellogenin protein concentrations in estrone-exposed juvenile rainbow trout (*Oncorhynchus mykiss*) | *H. Osachoff*

Pollinators and Agrochemicals

Michelle Hladik, Paul Reibach

MP034 Evidence of time-dependent sorption of clothianidin in soils limiting uptake of residues to corn pollen and canola nectar after multiple applications | *L. McConnell*

MP035 A Sampling Journey: Collection of Nectar and Pollen from Different Crops | *S. Bondarenko*

MP036 The Evaluation of Three Milkweed Species for Use in Standard Seedling Emergence and Vegetative Vigor Testing Guidelines | *C. Picard*

MP037 Assessing the potential effects of chronic thiamethoxam exposure to honey bees: results of a hive feeding study conducted in North Carolina, USA | *M. Feken*

MP038 Role of the Varroa mite in honeybee (*Apis mellifera*) colony loss: a case study for adverse outcome pathway development with a nonchemical stressor | *R. Milsk*

Wildlife Ecotoxicology: Molecular to Community Effects

John Elliott, Nico van den Brink, Miguel Mora

MP039 Effects of Perchlorate in Japanese Quail to Evaluate Avian Two-Generation Toxicity Test Methods for Endocrine Disruption | *M. Quinn*

MP040 Reproductive, immune, and neuromuscular effects of insensitive munitions in Japanese quail (*Coturnix japonica*) | *A. Jackovitz*

MP041 Exposure of passerine resident birds to toxic elements deposited with historical and actual mining residues in North of Mexico | *K. Monzalvo*

MP042 Mercury in Forage Fish from Mexico and Central America: Implications for Fish-Eating Birds | *J. Elliott*

MP043 A metaanalysis of bird species to determine if migration distance predicts species sensitivity to dioxin-like compounds | *K. Bianchini*

MP044 Identity of key amino acids in the avian AHR1 ligand-binding domain predicts the in vivo sensitivity of European starlings to dioxin-like compounds | *M. Eng*

MP045 Halogenated organic compounds identified in California Peregrine Falcons (*Falco peregrinus*) by nontargeted analysis | *E. Hoh*

MP046 Modeling avian vitellogenesis: Linking sublethal effects of contaminants to adverse reproductive outcomes in birds | *B. Armstrong*

MP047 Climate correlates and implications for organochlorine contaminants in the Michigan Great Lakes, USA, from 1999 to 2014 | *L. Fuentes*

MP048 Relative Sensitivity of Passerines to PCBs: Characterizing Species-Specific Suites of Developmental Endpoints | *D. Henshel*

MP049 Organohalogen Contaminants and Metabolites and Thyroid Hormone and Retinol in Snapping Turtles (*Chelydra serpentina*) From Laurentian Great Lakes Sites | *R. Letcher*

MP050 Omics approach of proteomic and metabolomic analysis of PCBs toxicity in the dog brain | *K. Takaguchi*

MP051 Toxicological assessment of polychlorinated biphenyls (PCBs) and hydroxylated PCBs (OH-PCBs) in the brain of dogs using metabolomics approach | *K. Nomiyama*

MP052 Metabolism and biotransformation of organohalogen compounds in the liver microsomes of cats and dogs | *H. Mizukawa*

Difficult Substances - Methods and Approaches for Risk Assessment

Frank Gobas, Philip Leber, Paul DeLeo, Karen Eisenreich, Duane Huggett, Anne Kim

MP053 Evaluation of Leachate from Tire and Road Wear Particles (TRWP) Upflow Percolation Column Tests | *J. Bare*

MP054 Studying sorptive interactions of surfactants on different hydrophobic phases using reversed-phase HPLC | *J. Hammer*

MP055 Strategies to reduce the number of fish used in aquatic toxicity tests | *P. Bishop*

MP056 Evaluation of Alternative Approaches for Measuring n-Octanol/Water Partition Coefficients for Methodologically Challenging Chemicals (MCCs) | *L. Burkhard*

Groundwater-to-Surface Water Interface Investigation for Sediment Characterization and Ecological Risk Assessment | Daniel Lavoie

MP057 Characterizing Groundwater Discharge and Contaminant Mass Flux to a Tidal Marine Creek | *J. Frederick*

MP058 Groundwater-to-Surface Water Interface (GSI) Investigations: Case Studies in Site Characterization using Multiple Techniques | *D. Lavoie*

Track

Aquatic Toxicology and Ecology

Integrated Env Assessment and Management

Environmental or Analytical Chemistry

Linking Science and Social Issues

Monday Poster Presentations

Plant Contaminant Interactions

William Doucette, Joel Burken

MP059 A review of bioaccumulation data in terrestrial plants for organic chemicals: metrics, variability and the need for standardized measurement protocols | *W. Doucette*

MP060 Biosorption of Nonylphenol by Pure Algae, Field-collected Planktons and Their Fractions | *Y. Ran*

MP061 Occurrence, distribution and bioaccumulation behavior of contaminants of emerging concern in a full-scale constructed wetland system | *B. Kelly*

MP062 Phytoforensics: Analytical Techniques for Assessing Plant Contamination | *J. Burken*

MP063 Role of Plant Leaf Composition in Bioaccumulation of Polychlorinated Biphenyls (PCBs) | *C. Belinga*

Recent Advances and Trends in Perfluorochemical Research

Jinxia Liu, Kavitha Dasu, Shoji Nakayama, Marc Mills

MP064 Comparison of Avian PFOS Exposures in Aquatic Habitats Affected by Aqueous Film Forming Foam Releases | *J. Conder*

MP065 Development of Analytical Methods for Monitoring Degradation Products of 6:2 Fluorotelomer Phosphates in Abiotic Matrices and WWTP Sludge | *R. Van Hoven*

MP066 In Vivo and In Vitro Isomer-Specific Biotransformation of Perfluoroctane Sulfonamide in Common Carp (*Cyprinus carpio*) | *M. Chen*

MP067 Isomer-specific biotransformation and partitioning of two perfluoroctane sulfonate (PFOS)-precursors in aerobic soil | *S. Mejia*

MP068 Novel and established per-/poly-fluoroalkyl substances and bioaccumulation and biomagnification in East Greenland ringed seals and polar bears | *G. Boisvert*

MP069 Occurrence of Per- and poly-fluoroalkylated substances (PFAs) in surface water, sediment and whole fish homogenates of Ottawa River | *K. Dasu*

MP070 Perfluorinated compounds and pansteatitis in Mozambique tilapia in Mpumalanga province, South Africa | *J. Bangma*

MP071 Perfluorinated sulfonic and carboxylic acids and precursors in East Greenland and compared to subpopulations of polar bears from Hudson Bay, Canada | *G. Boisvert*

MP072 Reproduction and Endocrine Function in Fathead Minnows (*Pimephales promelas*) Exposed to Perfluoroctanesulfonate and Perfluorohexanoic acid | *D. Fort*

MP073 Routes of Perfluoroctane Sulfonate Uptake in Fish Collected Near a Location of Known Historic Aqueous Film Forming Foam (AFFF) Use | *H. Lanza*

MP074 Temporal trends of perfluoroalkyl substances in plasma of bottlenose dolphins residing in Sarasota Bay, FL | *M. Houde*

MP075 The residual levels, spatio-temporal distributions and ecological risks of perfluoroalkyl acids in western Lake Chaohu and its inflow rivers, China | *W. Liu*

Making Science Matter: Effective Science Communication and Outreach

Sarah Bowman, Sarah Crawford

MP076 Clemson WOW Project: an outreach program designed by Clemson University Graduate Students | *N. Sengupta*

MP077 Engaging citizens in science results in large-scale data gathering and scientific literacy | *S. Bowman*

MP078 How much mercury (Hg) is in our fish? Communicating Hg science and fish consumption recommendations to Northern Communities in Ontario, Canada | *G. Lescord*

MP079 Tox on Tap: Engaging the community in science | *E. Maloney*

MP080 Petrica Science Center: A unique model for informal high-school and undergraduate science education and outreach | *T. Mišljenović*

MP081 Riverpace: Results of a national survey of pharmaceuticals and personal care products in US rivers and streams by university student groups | *J. Becker*

MP082 Informal Communication of Nanotechnology Research: The Center for Sustainable Nanotechnology Blog | *D. Lohse*

Environmental Issues Surrounding the Great Salt Lake

Lee Rawlings

MP083 Evaluation of nutrient and trace element analytical methods for hypersaline waters: Results from the Great Salt Lake Laboratory Round Robin | *T. Hooker*

MP084 Mercury contamination in three lizard species from Antelope Island in the Great Salt Lake | *K. Killian*

MP085 Seasonal and longitudinal dynamics of targeted contaminants of emerging concern in East Canyon Creek, Park City, Utah, USA | *S. Haddad*

MP086 Spatio-temporal bioaccumulation and trophic dilution of pharmaceuticals in East Canyon Creek, Park City, Utah, USA | *S. Haddad*

Assessing Risks of Pesticides to Federally Listed (Threatened and Endangered) Species at a National Level | Amy Blankinship, Cathy Laetz, Nancy Golden

MP087 A national scale threatened and endangered species risk assessment process to prioritize assessment refinements for insecticide use patterns | *M. Kern*

MP088 Ecological Risk Assessment for Threatened and Endangered Species following Pesticide Applications | *J. Sullivan*

MP089 Permethrin Drift from Truck Application Routes into the Habitat of an Imperiled Butterfly Taxon | *T. Bargar*

MP090 Refined aquatic exposure methods for species focused threatened and endangered species risk assessments | *N. Snyder*

MP091 Selection of Effects Data for National Scale Pesticide Endangered Species Assessments | *M. Kern*

MP092 Species focused co-occurrence and proximity analysis for refined terrestrial exposure estimates for threatened and endangered species risk assessments | *J. Amos*

Novel Mechanisms of Nanomaterial Toxicity Through Direct Exposure and Indirect Interactions with Environmental Constituents | Joseph Bisesi, Candice Lavelle, Tara Sabo-Attwood, Lee Ferguson

MP093 Effects of Acute Exposure to Nanoparticulate Metals on the Microbiome of Zebrafish (*Danio rerio*) | *R. Griffitt*

MP094 Effects of TiO₂ nanoparticles dietary exposure on *Drosophila melanogaster* survival, fecundity, pupation, and antioxidative genes expression | *B. Jovanovic*

MP095 Examination of the interactions of fish gastrointestinal and plasma proteins with single-walled carbon nanotubes using near infrared fluorescence | *H. Crosby*

MP096 Exposure of *Arabidopsis thaliana* to Zero-valent Iron Nanoparticle Induces the Enhancement of Biomass as a Result of Promoted Photosynthesis | *J. Kim*

MP097 Impacts of fish gastrointestinal system pH on single-walled carbon nanotube-ethynil estradiol sorption behavior | *T. Ngo*

MP098 Size and functionalization of nanodiamonds induces oxidative stress, lipid peroxidation and antioxidant gene expression in the gut of *Daphnia magna* | *G. Dominguez*

MP099 Systematic Analysis of Silver Nanoparticle-Induced Mitochondrial Toxicity: Size-Specific and Coating-Specific Effects | *L. Kubik*

MP100 The fish gastrointestinal system as a toxicant target: Identification of novel toxic mechanisms of nanomaterials and legacy pesticides using RNASeq | *J. Bisesi*

MP101 Toxicity effects of metal-based nanoparticles towards two estuarine invertebrates: *Scrobicularia plana* and *Hediste diversicolor* | *A. Chatel*

MP102 Viral Interactions with Carbon Nanomaterials in the Aquatic Environment; Implications for Fish Toxicity | *C. Lavelle*

Fate and Effects of Metals

Bill Stubblefield

MP103 Agricultural Land Usage and Detection of Lead in the Cache River Watershed | *M. Kilmer*

MP104 As₂O₃ induces oxidative stress in gill, liver, brain and blood of *Cyprinus carpio* | *L. Bernadac-Villegas*

MP105 *Daphnia magna* immobilization assay application to toxicity of metal sulfate and the effect of chelate in medium | *T. Abe*

MP107 Detection of Lead (Pb²⁺) in the Lower Cache River Watershed, AR | *C. Rosado-Berrios*

MP108 Embryotoxicity of maternally-transferred methylmercury to fathead minnows (*Pimephales promelas*) | *K. Bridges*

MP109 Evaluating the Effects of Groundwater Nitrate/Hexavalent Chromium on Salmonids in the Columbia River | *C. McCarthy*

MP110 Evaluation of Multiple Linear Regression (MLR) Models for Predicting Chronic Aluminum and Iron Toxicity to Freshwater Aquatic Organisms | *D. DeForest*

MP111 Major-Electrolyte Depletion in *Daphnia magna* Exposed to Mining-Influenced Water | *E. Traudt*

MP112 Maternal Transfer of Essential and Nonessential Metals in a Thresher Shark | *J. Dutton*

MP113 Modeling Mercury Flow Dynamics and Bioaccumulation along East Fork Poplar Creek (EFPC) in Tennessee | *M. Balaji Bhaskar*

MP114 Nickel effects on benthic macroinvertebrate community composition in field-contaminated sediments | *R. Mendonca*

MP115 Organic Arsenic Trends Naturally Found in Seafood | *G. Greenberg*

MP116 Predicting aluminum toxicity as a mixture of effects from dissolved and precipitated metal | *R. Santore*

MP117 Using *Eichhornia crassipes* as an alternative to grow *Pleurotus ostreatus* | *M. Castañeda Antonio*

MP118 A Wetland Case Study: Connecting Toxicity and Chemistry Through Multiple Lines of Evidence | *C. Ray*

MP119 Bioaccumulation of cadmium in invertebrates along the Buffalo National River due to historic lead and zinc mining operations | *J. McCauley*

MP120 Contamination and Multi-Decay of Reservoir-Liberated Mercury in a Downstream Fishery: Effects of Fish Trophic Level, Size, and Age | *D. Green*

MP121 Comparing the chronic toxicity of binary metal mixtures between *Ceriodaphnia dubia* and *Pimephales promelas* | *K. Newton*

Monday Poster Presentations

Bioavailability: 21st Century Nexus Between Site Characterization, Risk Assessment and Remediation | Glenn Hoeger, Nicholas Basta

MP122 Using Bioaccessibility Data for Site-Specific Adjustments to Bioavailability for Dioxins in Soil: A Case Study | *Y. Lowney*

MP123 Urban Park soils metals distribution and bioaccessibility in Greater Victoria, BC, Canada | *M. Dodd*

MP124 Arsenic soil bioaccessibility used to refine soil cleanup levels at a historic smelter facility | *J. Clark*

MP125 Evaluation of Dermal Absorption of PAHs from Soils Impacted by Clay Target Fragments for Application in Human Health Risk Assessment | *G. Hoeger*

MP126 Rhamnolipid Biosurfactant and Linoleic Acid Amendment Effects on Bioavailability of PAHs in Soil | *D. Wolf*

MP127 Effect of Source Material on PAH Bioavailability to Humans and Ecological Receptors | *H. Xia*

MP128 Understanding the Effects of Aging on the Bioavailability of Legacy Contaminants in Marine Sediments | *A. Taylor*

Alternative Approaches for Ecotoxicity Assessments

Teresa Norberg-King, Scott Belanger, Amy Beasley

MP129 Life stage terminology in regulatory test guidelines: Improvements for harmonization | *M. Embry*

MP130 The fathead minnow embryo normal development | *S. Böhler*

MP131 Additional endpoints for the fathead minnow FET test: Evaluation of growth, developmental and gene expression metrics | *M. Sellin Jeffries*

MP132 Use of High Accuracy QSARs for reliable regulatory endpoint predictions and further uses in environmental risk assessment | *P. Thomas*

MP133 Acute fish toxicity QSARs are useful in predicting fish embryo toxicity | *S. Belanger*

MP134 Assessing Uncertainty of Interspecies Correlation Estimation Models for Aromatic Compounds | *A. Bejarano*

MP135 Determination of Physical-Chemical Domains for High-Throughput Screening of Ecotoxicological Hazards of Substances | *C. Lehman*

MP136 Application of passive dosing and quantitative structure-activity relationships to characterize aromatic hydrocarbon toxicity to zebrafish | *J. Butler*

MP137 An In Silico Approach for the Prediction of Estrogenic Bioactivation of Environmental Chemicals | *C. Pinto*

MP138 Assessment of Potential Ecological and Health Impact of Coal Ash Spill in Dan River North Carolina | *X. Wen*

MP139 Estimating baseline toxicity and in vivo and in vitro bio-partitioning of complex mixtures of nonpolar analytes using GCxGC | *D. Nabi*

MP140 Hazard assessment of Chlorantraniliprole and its Formulated Product Altacon® to Ceriodaphnia dubia using a population-level approach | *J. Stark*

MP141 Toxicity in the absence of inbreeding: Aquatic pollution-induced deformities in the cosmopolitan chironomid Paratanytarsus grimmii | *B. Gagliardi*

Impacts of Naturally Occurring, Catastrophic Events on Ecosystems

Thomas Deardorff

MP142 Mercury mobilisation from burnt soils and ashes after a wildfire and rainfall events: effect of vegetation type and fire severity | *P. Pereira*

MP143 Post-Wildfire Consequences on Watershed Hydrology and the Environment | *P. Shaller*

MP144 Risk Factors that Reset the Ecological Process of a Forest Ecosystem: Causes of California Wildland Fires | *T. Deardorff*

Advances in National-Level Data for Risk Assessment of Pesticides to Federally Listed Threatened and Endangered Species | Bernaly McGaughey, Tilghman Hall, George Tuttle, R. Scott Teed, Teung Chin, Kat Maybury

MP145 Exploring a Mechanism to Access Existing and Localized Best Available Data for National Pesticide Risk Assessment | *D. Campana*

MP146 National Endangered Species Assessment for Diazinon: Screening-level Ecological Risk Assessment | *R. Bretton*

MP147 National Endangered Species Assessment for Malathion: Refined Aquatic and Terrestrial Ecological Risk Assessment | *R. Teed*

MP148 A refined ecological risk assessment for the California Red-Legged Frog potentially exposed to malathion | *R. Bretton*

MP149 A refined ecological risk assessment for the delta smelt potentially exposed to malathion in California | *R. Bretton*

Fate and Effects of Chemicals from Diffuse Sources and Stormwater

Kevin Rader, Robert Gensemer

MP150 Organochlorine pollutants in Escambia Bay, Florida: Origin and potential impacts | *J. Liebens*

MP151 Performance of Commercial Ion Exchange Resins for Enhanced Copper Removal in Bioretention Media | *K. Hauser*

MP152 Pollutant Removal Efficiencies of Self-Converted Dry Detention Ponds in Baltimore County, MD | *R. Owen*

MP153 Biosolids as a Concentrating Process for Diffuse PCB Sources in an Urban Environment | *T. Needham*

Human Exposures to Chemicals in Consumer Products

Yvette Lowney

MP154 USEPA's Safer Choice Program evaluation of ingredients within personal care products | *J. Suski*

MP155 A Suite of Integrated Predictive Models for the Evaluation of Consumer Exposures to Organic Chemicals in Paper Products | *M. Posson*

MP156 Assessing Formaldehyde Exposure from Consumer Hair Care Products | *M. Posson*

MP157 Assessing Incidental Hand-to-Mouth Exposure to lead from Consumer Products | *R. Kalmes*

MP158 Wearable Technology Products and Allergic Contact Dermatitis: Chemical Exposure and Risk Assessment Challenges & Developments | *A. Singhal*

MP159 What is the purpose of ingredients used in household cleaning products? A study on the distribution of functions for ingredients in products | *C. Pacelli*

Aquatic Toxicology and Ecology General - Part 1

Scott Belanger

MP160 An Experimental Design for a 150-Day Fathead Minnow (Pimephales promelas) Full Life-Cycle Exposure | *J. Marini*

MP161 Assessment of human-associated fecal bacteria markers in stormwater outfalls | *M. Stallard*

MP162 *Aurelia aurita*: a prospective pelagic bioindicator | *M. Lowder*

MP163 Deciphering Causes of Biological Impairment in a Heavily Urbanized Watershed | *J. Diamond*

MP164 Determining the Presence and Survival of Fecal Bacteria in Murfreesboro, Tennessee USA Storm Drains | *S. Youngman*

MP165 Development of a monitoring tool for the Saint John Harbour using caged blue mussels (*Mytilus* spp.) | *V. McMullin*

MP166 Development of Amine Oxide Specific QSARs for Aquatic Toxicity | *J. Brill*

MP167 Ecological Effects and Ecotoxicity Benchmarks for Hypoxia | *M. Shibata*

MP168 Effects of Natural Sources on Nutrient Levels in Altered and Unaltered Streams | *S. Chappell*

MP169 Effects of Water Hardness on Bacterial Attachment to Fine Sand | *L. Jarnagin*

MP170 Effects of water hardness on the swimming performance and metabolic status of freshwater fish species | *A. Manek*

MP171 Environmental Factors that Affect Target Susceptibility to Bti Endotoxins | *J. Iburg*

MP172 Evaluation of whole mount *in situ* hybridization as a tool for pathway-based toxicological research in early life stage fathead minnows | *J. Cavallin*

MP173 Generation of *Tg(cyp1a: gfp)* transgenic zebrafish for development of a chemical screening platform for aryl hydrocarbon receptor activity | *C. Li*

MP174 *Hyalella azteca* population level endpoints for assessment of ecotoxicological stress | *M. Flynn*

MP175 Indicating Water-Quality Conditions in Connected Depressions Using Macroinvertebrate and Diatom Assemblages in the Mississippi Alluvial Plain | *J. Bouldin*

MP176 Natural variability in reference site mussel samples: An annual and seasonal analysis | *A. Hills*

MP177 Population Dynamics of *Parhyale hawaiensis* (Crustacea: Amphipoda) in wild and laboratory culture. Endpoints for an ecotoxicity test | *M. Flynn*

MP178 Predicting energy content and fish condition of juvenile rainbow trout (*Oncorhynchus mykiss*) using bioelectrical impedance analysis | *J. Durante*

MP179 Quantifying contaminants in Bear Creek sediment: Validation of novel analytical techniques and implications for risk assessment | *S. Hartzell*

MP180 Recovery of the intertidal communities in Howe Sound: 25+ years of monitoring data analysis and modeling | *S. Bard*

MP181 Refinement of Harbor Sediment Samples to Characterize Toxicity and Bioaccumulation under USACE's and USEPA's Ocean Disposal Methodology | *M. Bowersox*

MP182 Setting River Zone Specific Water Quality Objectives for the Rum Jungle Rehabilitation Project | *R. Smith*

MP183 Using carbon dioxide as a barrier to prevent bigheaded carp movement | *R. Erickson*

MP184 Zebra Mussels as Bioindicators of Habitat Quality | *M. Lowder*

MP185 Determination of Acute and Sub-Chronic Toxicity of Emerging Contaminants in Early Life Stages of Rainbow Trout (*Oncorhynchus mykiss*) | *D. Schultz*

MP186 Toxicology assessment of water samples: A portable device based on phytoplankton chlorophyll fluorescence emission | *M. Perron*

Track

Aquatic Toxicology and Ecology

Integrated Env Assessment and Management

Environmental or Analytical Chemistry

Linking Science and Social Issues

Monday Poster Presentations

Environmental or Analytical Chemistry General - Part 1

MP187 Analysis of Pesticides from Farm-Raised Catfish in Mississippi | *S. Boone*
MP188 Brominated/chlorinated dibenz-p-dioxins and dibenzofurans in soils from Agbogbloshie e-waste recycling site in Accra, Ghana | *T. Matsushita*
MP189 Chemical Characterization of Vermicomposted Agroindustrial Wastes | *L. Pigatin*
MP190 Concentration of pesticides in the ground water of Merida Metropolitan Area in Yucatan, Mexico | *E. Norena-Barroso*
MP191 Contamination status of brominated flame retardants in house dust from Japan and risk assessment for humans | *R. Nishimura*
MP192 Current Efforts by NIST to Produce Environmental Matrix Reference Materials Certified for Organic and Inorganic Contaminants | *J. Kucklick*
MP193 Hebei Spirit Oil Spill and its environmental impacts – Six years after the spill | *M. Kim*
MP194 Influence of Traffic Volume on the Distribution of Metals and PAHs in Soils and Plants along Roadways in Victoria, Canada | *C. Ghimire*
MP195 Occurrence and distribution of legacy pops and emerging organic contaminants in a tropical reservoir | *Q. Wang*
MP196 Persistent organic pollutant and sterol distributions in the offshore East China Sea influenced by the low salinity water mass | *M. Kim*
MP197 Potential impacts to perennial springs from tar sand mining, processing, and disposal on the Tavaputs Plateau, Utah, USA | *L. Frederick*
MP198 Presence of Third-Generation Antifouling Biocides in Brazilian Ports | *L. Diniz*
MP199 Spatial and Temporal Distributions of Mosquito Adulticides in Houston during Spraying Season | *A. Clark*
MP200 The role of microRNAs in diazinon-induced infertility in *C. elegans* | *J. Cobb*
MP201 Time Trend of Polybrominated Diphenyl Ethers (PB-DEs) in Serum of the Korean General Population | *J. Kim*
MP202 Transformation of proteinaceous compounds by peroxymonosulfate | *J. Pedersen*
MP203 Twenty years of air-water gas exchange observations for pesticides in the western Arctic Ocean | *L. Jantunen*
MP204 Understanding the atmospheric pressure ionization of petroleum components: the effects of size, structure, and presence of heteroatoms | *A. Huba*
MP205 UV-induced degradation of complex polycyclic aromatic hydrocarbon mixtures under accurately emulated terrestrial conditions | *P. Hoffman*
MP206 Water solubility measurements of atrazine and fipronil, in freshwater and seawater | *P. Saranjampour*
MP207 Evaluation of Exposures to Naturally Generated Diacetyl and 2,3-Pentandione from Thermally Processed and Fermented Food Products | *L. Liang*

Linking Science and Social Issues General

MP208 Development of an online platform to promote environmental public health within citizen scientists | *D. Rohlman*
MP209 Engaging rural citizen scientists to explore impacts of fracking on ambient air | *D. Rohlman*
MP210 Finding the Future of Food | *A. Berardy*
MP211 Pesticides in surface water: Can citizen science help collect the data scientists need? | *M. Rakestraw*
MP212 Promoting environmental health education in a Native American community through the lens of First Foods | *D. Rohlman*
MP213 Racial/Ethnic Disparities in Cumulative Phthalates Exposure Among U.S. Reproductive-age Women: Findings from NHANES 2001-2012 | *J. Varshavsky*
MP214 Support for State-level risk management in the absence of Federal guidance: StateHELP | *A. Willis*

MP215 Sustainability Assessment of a National Bioeconomy: Approaches and Tools to Evaluate Emergent Properties | *B. Walton*

MP216 The Penobscot River and Environmental Contaminants: Assessment of Tribal Exposure through Sustenance Lifeways | *C. Orazio*

MP217 Words Matter – Presenting Science-Based Information to the Public | *L. Kapustka*

Regulatory Directions General

MP218 Concentrations of Selected Elements in Unfinished Wood and Other Natural Materials | *A. Willis*

MP219 Considerations for conducting higher tier pulse duration tests to simulate realistic exposure patterns for aquatic risk assessments | *A. Samel*

MP220 The Crystalline Silica Conundrum in the Classification of Products Using the Globally Harmonized System for Classification and Labelling of Chemicals | *A. Lewis*

MP221 Uncertainties of USEPA's New Standard Default Factors on Toxicity Assessment | *C. Julias*

Terrestrial or Wildlife Toxicology and Ecology General | Ben Barst

MP222 A probabilistic risk assessment model for bird species foraging in corn and soybean fields with different tillage practices | *D. Moore*

MP223 Assessment of Fungicidal Activity of Relevant Metabolites of a Phenylamide Fungicide | *G. Nallani*

MP224 Cadmium in gulls: A global overview | *W. Espejo*

MP225 Characterizing contaminant exposure of mountain plovers on wintering grounds in California and breeding grounds in Colorado, Wyoming, and Montana | *K. Dickerson*

MP226 Declines in Butterflies and Insectivorous Birds in Areas of High Pesticide Use in California's Central Valley | *H. van Vliet*

MP227 Distribution of metals in tissues of a potentially threatened and nearshore population of Australian humpback dolphins (*Sousa sahulensis*) | *L. Weijis*

MP228 Ecological Preliminary Remediation Goals for Soils at the Los Alamos National Laboratory | *R. Rytty*

MP229 Effect of cadmium bioavailability in food on its compartmentalization in carabids | *A. Bednarska*

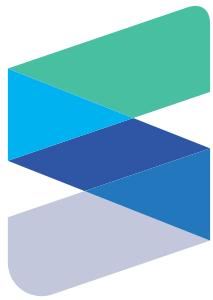
MP230 Estimation of the tissue levels of amitraz in treated West African Dwarf Sheep using thin layer chromatography and spectrophotometry | *S. Anika*

MP231 GLMs, CCAs, and SEMs, Oh My! How Using Advanced Statistical Techniques May Improve Your Ecotoxicological Research | *N. Michel*

MP232 Landscape Analysis of Metals, Radionuclides and Chemicals in Western Bluebird (*Sialia Mexicana*) Eggs around Los Alamos National Laboratory | *S. Gaukler*

MP233 Pesticides in Shorebird Eggs Collected from National Wildlife Refuges in Oregon and Washington | *K. Kuivila*

MP234 Preliminary environmental fate data for a sprayable RNA-based Biocontrol to control Colorado potato beetle | *N. Peranginangin*


MP235 Preliminary screening data for a sprayable RNA-based biocontrol for Colorado potato beetle informs environmental risk assessment | *A. Burns*

MP236 Retrospective Analysis of the Passerine Acute Oral Toxicity Data Requirement of the United States Environmental Protection Agency | *M. Radtke*

MP237 Use of a Web-Based Interactive Database for Developing Protective Concentration Levels for Wildlife | *B. Yates*

MP238 Utility of Bioassays comparing the biological activity of an active ingredient and its metabolites | *B. Sharma*

MP239 Zinc in gulls: A Review of published data | *W. Espejo*

SETAC Europe CERTIFICATION OF ENVIRONMENTAL RISK ASSESSORS

The SETAC Europe CRA Programme

certification.setac.eu

NOTES

facebook.com/setacworld

OVER 45 YEARS OF ENVIRONMENTAL SCIENCE

SINCE 1969

Visit booth 600/601 to learn about our latest expansions and
new service offerings.

VISIT BOOTH 600/601 TO RECEIVE
A FULL LIST OF DATES & TIMES FOR
SMITHERS VISCIENT
PRESENTERS & CHAIRED SESSIONS

Poster: An Experimental Design for a 150-Day Fathead Minnow (*Pimephales promelas*) Full Life-Cycle Exposure
Presented by Joseph Marini

SESSION: POLLINATORS AND AGROCHEMICALS

SESSION CHAIRED BY DR. PAUL REIBACH

Platform and Poster:
Age-related sensitivity of three common sediment assay organisms exposed to a representative pyrethroid insecticide
Presented by Michael Bradley

www.SmithersViscient.com

SESSION: AQUATIC TOXICOLOGY AND ECOLOGY

Poster: The Evaluation of Three Milkweed Species for Use in Standard Seedling Emergence and Vegetative Vigor Testing Guidelines
Presented by Christian Picard

Platform: The Evaluation of Modifications of Methods and Equipment Towards Improvement of the OECD Draft 22-Day Repeat Exposure Larval Honey Bee Methods
Presented by Dr. Michael Patnaude

SESSION: CONTINUING EVOLUTION OF SEDIMENT TOXICITY METHODS AND DATA INTERPRETATION

SESSION CHAIRED BY CHRISTIAN PICARD

Tuesday 3 November

General Opening Hours

TIME	AREA	LOCATION
7:00 a.m.–6:00 p.m.	Registration	East Registration
8:00 a.m.–6:30 p.m.	Poster Viewing and SETAC Store	Exhibit Hall
9:00 a.m.–6:30 p.m.	Exhibitions	Exhibit Hall

Daily Schedule

TIME	EVENT	LOCATION
7:00 a.m.–8:00 a.m.	Poster Setup	Exhibit Hall
7:00 a.m.–8:00 a.m.	Senior Resource Group Second Annual Meet and Greet	251 C
8:00 a.m.–9:15 a.m.	Morning Platform Sessions	See session listing
9:15 a.m.–10:00 a.m.	Coffee Break	Exhibit Hall
10:00 a.m.–11:15 a.m.	Morning Platform Sessions cont'd	See session listing
11:15 a.m.–1:00 p.m.	Women in SETAC Luncheon (ticket required)	254
11:15 a.m.–1:00 p.m.	Lunch Break	
1:00 p.m.– 3:00 p.m.	Hydrotopia Game – Reflection Session	151 G
1:00 p.m.–2:15 p.m.	Afternoon Platform Sessions	See session listing
2:15 p.m.–3:00 p.m.	Coffee Break	Exhibit Hall
3:00 p.m.–4:15 p.m.	Afternoon Platform Sessions cont'd	See session listing
4:00 p.m.–5:00 p.m.	State of SETAC Address: SETAC Global and North America Outline of the State of Our Society	251 C
4:30 p.m.–5:15 p.m.	Keynote Speaker: David Montgomery	Ballroom AC
5:00 p.m.–6:30 p.m.	Poster Social	Exhibit Hall
7:00 p.m.–11:00 p.m.	Tuesday Night Social (ticket required)	Keys on Main

Business Meetings

TIME	MEETING	LOCATION
7:00 a.m.–8:30 a.m.	ASTM Subcommittee E50.47 on Environmental Fate and Effects	251 F
7:15 a.m.–8:00 a.m.	South Central Regional Chapter	151 DE
8:00 a.m.–9:00 a.m.	Global Communications Committee	151 AB
8:00 a.m.–9:30 a.m.	Exhibitor Meeting	254
9:00 a.m.–11:00 a.m.	Publications Advisory Committee	151 AB
9:00 a.m.–10:30 a.m.	North America Chemistry Advisory Group Meeting	251 E

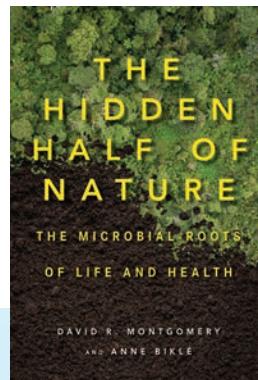
Please join us for the final bidding of the Silent Auction tonight at 6:00 p.m. in the Exhibit Hall.
 This fundraising event benefits student activities and student members at the meeting.

Business Meetings cont'd

TIME	MEETING	LOCATION
11:00 a.m.–12:00 p.m.	North America Endowment Fund Board of Trustees	250 CF
11:00 a.m.–12:00 p.m.	SETAC Globe	151 AB
11:30 a.m.–12:15 p.m.	North America Meetings Committee	151 G
11:30 a.m.–12:30 p.m.	Mid-South Regional Chapter	151 DE
11:30 a.m.–1:30 p.m.	Endocrine Disrupter Testing and Risk Assessment Advisory Group	251 F
12:00 p.m.–1:00 p.m.	Pacific Northwest Regional Chapter	150 G
12:00 p.m.–1:00 p.m.	TSCA Reform Dialogue Group	251 D
12:00 p.m.–2:00 p.m.	IEAM Editorial Luncheon	251 C
1:00 p.m.–2:00 p.m.	Global Finance Meeting	250 CF
1:00 p.m.–2:00 p.m.	Chesapeake Potomic Regional Chapter	151 AB
1:00 p.m.–5:00 p.m.	North America LCA Advisory Group Roadmapping Workshop	251 E
2:00 p.m.–3:00 p.m.	Scientific Integrity Sub-Committee	151 DE
2:00 p.m.–3:00 p.m.	North America Finance Meeting	250 CF
2:00 p.m.–3:00 p.m.	NASAC Face-to-Face Meeting	150 G
3:00 p.m.–4:30 p.m.	WERF CEC6R12 Project Meeting	251 D
5:00 p.m.–6:00 p.m.	North America Board of Directors Meeting	250 CF
5:30 p.m.–6:30 p.m.	Sustainability Advisory Group	151 AB
6:30 p.m.–7:30 p.m.	Global Soils Advisory Group	151 DE
6:30 p.m.–8:00 p.m.	Animal Alternatives Advisory Group	150 G

Daily Keynote Speaker

4:30 p.m.–5:15 p.m. | Ballroom AC


David Montgomery

Professor of Geomorphology, University of Washington

David Montgomery is a MacArthur Fellow and Professor of Geomorphology in the Department of Earth and Space Sciences at the University of

Washington. Montgomery will discuss our tangled relationship with microbes and their potential to revolutionize agriculture and medicine. He received his B.S. degree in Geology at Stanford University and Ph.D. in Geomorphology at UC Berkeley. His research interests involve the effects of geological processes on ecological systems and human societies and interactions among climate, tectonics and erosion in shaping

topography on Earth and Mars. He has published more than 200 scientific papers, four technical books and is a three-time winner of the Washington State Book Award for "The Rocks Don't Lie," "Dirt" and "King of Fish." His newest book, "The Hidden Half of Nature: The Microbial Roots of Life and Health," was just released this month by W.W. Norton & Co. and is co-authored with his wife, Anne Biklé.

Please join us immediately after his presentation at the SETAC Store in the Exhibit Hall for a book signing with David Montgomery, featuring his brand new book!

final voting for the
GLOBAL PHOTO CONTEST
 today at 4:00 p.m.

Women in SETAC Luncheon

Risk – Conquering Fear and Embracing Disruption

11:15 a.m.–1:00 p.m. | Room 254 | \$30 for students/\$50 regular

Carine Clark

President and CEO at MaritzCX

Clark has decades of experience building successful software companies. Prior to MaritzCX, she was president and CEO for Allegiance. She played a crucial role in creating and executing the acquisition of Allegiance by Maritz Research and combining the two companies to create MaritzCX. As SVP and CMO for Symantec, Clark was responsible for global campaign and field marketing, partner and product marketing, branding and marketing communications, as well as public relations and analyst relations. As an executive at Altiris and Novell, she was responsible for driving top and bottom-line company growth through fiscally accountable and operationally efficient marketing. Her leadership helped establish Altiris as one of the fastest-growing technology companies in the world, growing revenues from \$62 million to \$230 million during a four-year period.

Risk is nothing new to Clark. From leaving a successful role as CMO at Symantec to taking a job with no title, no budget and half the salary earlier in her career. Throughout it all, Clark has

embraced these challenges with enthusiasm and humility. She is a healthy cancer survivor who underwent rigorous chemotherapy to battle her illness and considers herself an incredibly lucky human.

Throughout her career, Clark has directed and integrated diverse teams including product management, sales support, alliance, field and global marketing, events, brand and communications management. She has demonstrated expertise in bringing companies and people together through dozens of acquisitions with the exceptional ability to quickly promote best practices and to drive integrated teams toward common goals.

Clark has been recognized with numerous awards, including being named 2015 CEO of the Year by Utah Business magazine. She was ranked by ExecRank as #47 of all CMO's worldwide in 2012. She has also received the Women Tech Leadership Excellence Award, the 25th Annual TWIN Award and the Silicon Slopes v100 Award. Clark received her bachelor's degree in organizational communications as well as a master's degree in business administration.

TUESDAY
11:00 A.M.–1:30 P.M.
LIBERTY PARK | \$45

There will be a shuttle to and from the run from the Salt Palace Convention Center. Please arrive 15 minutes prior to departure time.

Tuesday Night Social

Keys on Main
7:00–11:00 p.m.

\$80 Member/
Nonmember

\$65 Students

Join us for drinks, dancing and dueling pianos! Get ready to sing along to your favorite songs and have plenty of laughs.

Light appetizers and two drink tickets are included.

Transportation will not be provided but the venue is walking distance of the convention center.

Tuesday Morning Platform Presentations

	8:00-8:15	8:20-8:35	8:40-8:55	9:00-9:15
250 AB	Chemicals of Emerging Concern in the Environment: Organic Flame Retardants Da Chen, Robert Letcher 190 In-situ accumulation of flame-retardants in muscle tissues of smallmouth bass (<i>Micropterus dolomieu</i>) and snail bullhead catfish (<i>Ameiurus brunneus</i>) <i>M. La Guardia</i>	191 Long term spatial and temporal trends of PBDEs and their replacements in the Great Lakes atmosphere <i>L. Liu</i>	192 Alternative Flame Retardants in San Francisco Bay Biota <i>R. Sutton</i>	193 Gestational vs. Lactational Transfer of Firemaster 550 Components in Perinatally Dosed Rats <i>A. Phillips</i>
250 DE	Design and Use of Spiked Sediment Toxicity Tests to Improve Environmental Management Decision Making Steven Bay, Lisa Taylor 197 Spiking metals in freshwater or marine sediments for use in laboratory toxicity testing: Challenges and recommendations <i>B. Brumbaugh</i>	198 Pyrethroid sediment toxicity data and risk assessment: challenges associated with highly hydrophobic chemicals <i>J. Giddings</i>	199 Development and application of freshwater sediment-quality benchmarks for currently used pesticides based on spiked-sediment toxicity data <i>L. Nowell</i>	200 Evaluation of sediment toxicity and risk assessment for benthic organisms: A DDT case study <i>P. Fuchsman</i>
251 AB	Antibiotics in the Environment: Ecological Effects, Antibiotic Resistance Development and Implications for Human Health Chairs: -----> 205 Antibiotics emission in the river basins of China and their linkage to bacterial resistance <i>G. Ying</i>	206 Modeling the emergence of antibiotic resistance in the environment: an analytical solution for the minimum selection concentration <i>B. Greenfield</i>	207 Occurrence and abundance of antibiotics and resistance genes in drinking water sources in East China <i>C. Cui</i>	208 Hazards Posed by Antibiotics and Antibiotic Resistance in Coastal Ecosystems <i>G. Scott</i>
Ballroom AC	Deepwater Horizon Oil Spill – Five Years Later – Part 1 Emily Maung-Douglass, Robert Griffitt 212 Discovery of biotic and abiotic transformation products from the Deepwater Horizon oil spill by ultra-high resolution FT-ICR mass spectrometry <i>R. Rodgers</i>	213 Evaluating the Endocrine Disrupting Potential of Crude Oil and Dispersant via Transactivation Assay Screening <i>A. Temkin</i>	214 Investigating the immunosuppressive effects of exposure to Deepwater Horizon oil on northern Gulf of Mexico fish <i>N. Ortell</i>	215 Analysis of Corexit® 9500 dispersant biodegradation in seawater using high resolution mass spectrometry <i>S. Choyke</i>
Ballroom B	Integrated Environmental Assessment and Management General – Part 1 Daniel Lavoie, Nile Kemble 220 Sustainability and Precautionary Principle in Source Water Protection For Drinking Water Production <i>I. Brüning</i>	221 US Environmental Protection Agency Updated Human Health Ambient Water Quality Criteria <i>C. Flaherty</i>	222 Determination of a Mercury Background/Reference Condition in a Northeastern Freshwater Pond System Using Multiple Lines of Evidence <i>K. Durocher</i>	223 Quantitative Weight of Evidence for Sediment Recovery in the Portland Harbor Superfund Site <i>D. Nielsen</i>
Ballroom D	Ecological Consequences of Exposure to Pharmaceuticals – Part 1 Heiko Schoenfuss, Daniel Caldwell, Silke Hickmann, Damia Barcelo, James Lazorchak 228 Ecopharmacovigilance in Practice: Focusing on Risk and not Presence <i>J. Snape</i>	229 Uptake of pharmaceuticals influences plant development and stress signaling networks <i>L. Carter</i>	230 The Effect of Sertraline on Behavioural Indices in Virile Crayfish (<i>Orconectes virilis</i>) <i>G. Pyle</i>	231 Effects of chronic analgesic exposure on the early life stages of zebrafish (<i>Danio rerio</i>) <i>K. Hammill</i>
Ballroom E	Mercury in Western North America: A Synthesis of Spatiotemporal Patterns, Biogeochemistry, Bioaccumulation and Risk Chairs: -----> 236 Comparison of mercury mass loading in streams to atmospheric deposition in watersheds in the Western US: Evidence for non-atmospheric mercury sources <i>J. Domagalski</i>	237 Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables <i>C. Eckley</i>	238 Spatial variations in benthic methylmercury production rates among ecosystems and habitats across western North America <i>M. Marvin-DiPasquale</i>	239 Mercury-Selenium mass concentrations and molar ratios in fish and wildlife across gradients of metal exposure in the Western United States <i>A. Stewart</i>
Ballroom F	Microplastics Kay Ho, Robert Burgess 244 Microplastic Abundance in South Carolina Estuaries <i>A. Gray</i>	245 Microplastics in 29 Tributaries to the Great Lakes <i>A. Baldwin</i>	246 Pathways for Degradation of Plastic Polymers Floating in the Marine Environment <i>B. Gewert</i>	247 Microplastic formation from plastic debris in estuarine environments <i>J. Weinstein</i>
Ballroom G	Scientific Approaches to Support Restoring Great Lakes Areas of Concern and Addressing Beneficial Use Impairments Chairs: -----> 252 Delisting the Deer Lake Area of Concern – An evaluation of actions and strategies for removing the fish consumption impairment <i>M. Loomis</i>	253 The complexity of success: A case study of the potential short-term and long-term impacts of remediation at the Upper Trenton Channel AOC <i>R. Otter</i>	254 Weight-of-evidence approach using chemical and biological metrics to evaluate tributaries to the Niagara River <i>M. Mills</i>	255 Issues Related to Removal of the Fish Tumor Beneficial Use Impairment at Ashtabula Ohio <i>M. O'Brien</i>
Ballroom H	Advancements in the Field of Passive Sampling: Unique Applications and Novel Developments – Part 2 Jonathan Challis, David Alvarez 260 Evaluation of various polymers for equilibrium passive sampling of moderately hydrophobic emerging pollutants in water <i>W. Lao</i>	261 Air-water exchange, spatial and temporal trends of PBDEs along an urban River using passive samplers <i>R. Lohmann</i>	262 Transforming Epidemiological Studies: Using Passive Wristband Samplers to Measure Environmental Contaminant Exposure <i>H. Dixon</i>	263 Integrative Passive Sampling for Quantitatively Estimating Pulsed Pesticide Exposures in Aquatic Systems <i>S. Morrison</i>
Ballroom I	Birds as Indicators of Ecosystem Health: Investigations of Molecular to Population Level Effects of Contaminant Exposure Jonathan Verreault, Kim Fernie, Jessica Head 267 In Vitro Metabolism of Tetradecabromo-1,4-diphenoxylbenzene Flame Retardant and Photodegraded By-products in a Herring Gull Hepatic Microsomal Assay <i>R. Letcher</i>	268 Relationships between PBDE concentrations and activity and transcription of type 1 deiodinase in liver of a highly flame retardant-exposed gull <i>A. François</i>	269 Associations between organohalogen concentration, expression of genes involved in thyroid regulation and thyroid hormones in highly contaminated gulls <i>R. Técher</i>	270 Embryonic Exposure to Technical Short Chain Chlorinated Paraffins (C10-13, 55.5%) Alters Thyroid-Related Parameters in Hatchling American Kestrels <i>K. Fernie</i>
Ballroom J	Ecotoxicology of Environmentally Relevant Nanomaterial Exposures Helen Poynton, Jason Unrine, James Lazorchak 275 The ecotoxicity of surface functionalized silver nanoparticles in microcosms with increasing community complexity <i>F. Wu</i>	276 Elucidating impact of nanosized TiO ₂ and ZnO on microbial ecology <i>Y. Liang</i>	277 Experiments and models relating effects of silver nanoparticles on individuals to populations of <i>Daphnia</i> <i>L. Stevenson</i>	278 Investigating toxicity of ZnO nanoparticles to earthworms in soils of different organic matter using oxidative stress and weight loss as endpoints <i>P. Mwanga</i>
Track	Aquatic Toxicology and Ecology	Integrated Env Assessment and Management	Environmental or Analytical Chemistry	Linking Science and Social Issues

Tuesday Morning Platform Presentations

10:00-10:15		10:20-10:35		10:40-10:55		11:00-11:15			
Chemicals of Emerging Concern in the Environment: Organic Flame Retardants Da Chen, Robert Letcher									
194 Inhibition of thyroid hormone sulfo-transferase activity by 2,4,6-tribromophenol and hydroxylated PBDEs in a human choriocarcinoma placental cell line C. Leonetti		195 Bioaccumulation processes of alternative halogenated flame retardants and PBDEs in the terrestrial and marine environments of the Canadian Arctic A. Morris		196 Measuring Gaseous Organic Flame Retardants in Great Lakes Air Using Passive Polyethylene Samplers C. McDonough		Discussion			
Design and Use of Spiked Sediment Toxicity Tests to Improve Environmental Management Decision Making Steven Bay, Lisa Taylor									
201 Bioavailability-based sediment risk assessment approach for nickel C. Schlekat		202 Validation of a new standardized test method for the freshwater amphipod <i>Hyalella azteca</i> : determining the chronic effects of silver in sediment L. Taylor		203 The Use of Mesocosms to Assess Contaminant Effects on Benthic Communities M. Fulton		204 The effects of kaolin clay on the amphipod <i>Eohaustorius estuaricus</i> B. Phillips		250 AB	
<---- Title James Lazorchak, Jason Snape, Oana Enick, Raanan Bloom, Guang-Guo Ying									
209 Fate and distribution of ARGs under the selective pressure of sub-lethal level of heavy metals on the river catchment scale Y. Luo		210 Expression patterns of sul genes in typical sulfonamide-resistant bacteria from manured soils in Jiangsu Province, China N. Wang		211 Antimicrobial susceptibility and mitigation upon triclosan exposure in wastewater-associated stream periphyton communities K. Trowbridge		Discussion		251 AB	
Deepwater Horizon Oil Spill – Five Years Later – Part 1 Emily Maung-Douglass, Robert Griffitt									
216 Characterization of oil and water-accommodated fractions used to conduct toxicity testing for the Deepwater Horizon Natural Resource Damage Assessment H. Forth	●	217 Combined effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi C. Pasparakis	●	218 Characterization of the various sediment exposure techniques used during toxicity testing in support of the Deepwater Horizon NRDA M. Krasnec	●	219 Effects of Deepwater Horizon Oil on the Migration and Survival of Marsh Periwinkle Snails (<i>Littoraria irrorata</i>) R. Garner	●		250 DE
Integrated Environmental Assessment and Management General – Part 1 Daniel Lavoie, Nile Kemble									
224 Characterization of Wetland Contaminant Transport Processes through Innovative Field and Modeling Techniques C. Jones	●	225 Development of the Chemical Aquatic Fate and Effects Database and its Usefulness in Assisting Chemical Spill in Aquatic Environments A. Bejarano	●	226 Modifications of the AQUATOX Ecosystem Model for Improved Application in the Nearshore Marine Environment E. Blancher	●	227 ECOTOX Knowledgebase: Search Features and Customized Reports B. Kinziger	●		251 AC
Ecological Consequences of Exposure to Pharmaceuticals – Part 1 Heiko Schoenfuss, Daniel Caldwell, Silke Hickmann, Damia Barcelo, James Lazorchak									
Discussion		233 Bioaccumulation of pharmaceuticals by <i>Corbicula fluminea</i> during an effluent-dependent experimental stream mesocosm study of TiO2 nanoparticles S. Burkett	●	234 Biomonitoring of Contaminants of Emerging Concern using Wild Eastern Oysters (<i>Crassostrea virginica</i>) in Georgia, USA Estuaries D. Brew	●	235 Human pharmaceuticals with aquatic effects at or below the 1 µg/L NEPA categorical exclusion concentration for conducting environmental assessments J. Laurenson	●		251 AB
<---- Title Collin Eagles-Smith, Chris Eckley, David Evers, Mark Marvin-DiPasquale									
240 Spatial and temporal trends in fish mercury concentrations across western North America C. Eagles-Smith	●	241 The influence of reservoir structure and management on mercury concentrations in sportfish across Western North America J. Willacker	●	242 Spatial and Temporal Variation in Avian Mercury Exposure and Risk Across Western North America: a Synthesis J. Ackerman	●	243 Spatial and temporal variability in fish mercury concentrations from a large river system J. Becker	●		251 BC
Microplastics Kay Ho, Robert Burgess									
248 Occurrence of Microplastics in the Stomach Contents of Sunfish from the Brazos River Basin, Central Texas C. Peters		249 Aryl Phosphite Antioxidants as Molecular Markers of Plastic Particles in Marine Environments G. Getzinger		250 Bioavailability of Fluoranthene Adsorbed to Microplastics S. Au		251 Does microplastic in sludge pose a risk to terrestrial environments? A. Palmqvist			251 AC
<---- Title Amy Mucha, Edwin Smith, Marc Mills, David Walters									
256 Assessing Historical and Emergent Sediment Contamination in Three Lake Ontario Areas of Concern K. Stevack		257 Use of macroinvertebrate biotic condition and tissue contaminant levels to assess and rank tributaries to the Niagara River Area of Concern J. Lazorchak		258 Determining the Impacts of Toxins in the Great Lakes Using Biomarkers of Dreissenid Mussels N. Neureuther		259 Environmental Enhancements to the Milwaukee Harbor Breakwater B. Suedel			251 DE
Advancements in the Field of Passive Sampling: Unique Applications and Novel Developments – Part 2 Jonathan Challis, David Alvarez									
264 Calibrating a polydimethylsiloxane passive air sampler for measuring indoor SVOCs M. Diamond		265 Multi-Analyte Passive Samplers with Tissue Mimicry to Measure the Bioavailability of Contaminants P. Edmiston		266 Calibration of a novel passive sampler for the measurement of 34 polar organic contaminants in aquatic systems J. Challis		Discussion			251 EF
Birds as Indicators of Ecosystem Health: Investigations of Molecular to Population Level Effects of Contaminant Exposure Jonathan Verreault, Kim Fernie, Jessica Head									
271 Characterizing contaminant exposure along the Central Flyway and its effects on avian pre-migratory fuelling ability using two shorebird species K. Bianchini		272 Assessment of Population, Reproductive, and Health Impairments in Great Lakes Colonial Waterbirds Breeding in Contaminated Sites in Michigan K. Grasman		273 Decadal re-evaluation of contaminant exposure and reproductive success of ospreys (<i>Pandion haliaetus</i>) nesting in Chesapeake Bay Regions of Concern B. Rattner		274 Validating and Applying Amino Acid-Specific Stable Nitrogen Isotope Analysis to the Interpretation of Avian Contaminant Monitoring Data C. Hebert			251 GH
Ecotoxicology of Environmentally Relevant Nanomaterial Exposures Helen Poynton, Jason Unrine, James Lazorchak									
279 Modeling the effect of cysteine and humic substances on bioavailability of Ag from Ag nanoparticles to a freshwater snail S. Luoma		280 Adsorption and Uptake of Tri-Layered Silver Nanoparticles (107Ag@Au@109Ag) by the green alga <i>Chlamydomonas reinhardtii</i> D. Panton		281 Influence of PAH physico-chemical characteristics on their bioavailability once adsorbed to carbon nanotubes E. Linard		282 The interactive effects of UV radiation and titanium dioxide nanoparticles on marine snow-associated microbes V. Haynes			251 HI
Regulatory Directions		Remediation/Restoration		Special Symposia		Terrestrial or Wildlife Toxicology and Ecology			
Track	Ballroom J	Ballroom I	Ballroom H	Ballroom G	Ballroom F	Ballroom E	Ballroom D	Ballroom C	Ballroom B

Tuesday Afternoon Platform Presentations

	1:00-1:15	1:20-1:35	1:40-1:55	2:00-2:15
250 AB	"One Health": Opportunities for SETAC Leadership in Integrating Environmental Human and Animal Health Thomas Augspurger, Nil Basu 283 One Health System-Wide Science and Care: Opportunities to Help Counteract the Sixth Extinction While Improving Human Health and Economic Vitality <i>V. Beasley</i>	284 Inter-connections between human health and ecological integrity: An organizational framework for research and development <i>W. Benson</i>	285 Exploring Collaboration and Business Opportunities in One Health <i>J. Whaley</i>	286 Integrating the One Health" approach in the design of sustainable munition compounds." <i>M. Johnson</i>
250 DE	Building a Weight of Evidence for Bioaccumulation Assessment Michelle Embry, Jon Arnot 291 A Bioaccumulation Assessment of Triclosan using a Weight of Evidence Approach <i>S. Pawlowski</i>	292 A global model for a global issue: understanding key factors driving the trophic magnification of chemicals <i>D. Walters</i>	293 Applying a weight-of-evidence approach to the use of field-derived BAFs and BSAFs in the bioaccumulation assessment of pesticides in Canada <i>C. Quinn</i>	295 Pragmatic Pharmaceutical Prioritization: using accumulation and elimination as key steps in prioritizing drugs for environmental risk <i>S. Owen</i>
251 AB	Modeling and Interpreting Effects of Metals Mixtures Eric Van Genderen, Kevin Brix 299 Chronic effects of cadmium and nickel mixtures to <i>Daphnia magna</i> <i>E. Perez</i>	300 Toxicity of metal mixtures in a mining-impacted stream to <i>Daphnia magna</i> : Comparison of results in simulated and field-collected waters <i>K. Ebeling</i>	301 Interactive effects of waterborne metals (Cd, Cu, Ni and Zn), singly and in binary mixtures, on fathead minnow (<i>Pimephales promelas</i>) reproduction <i>M. Driessnack</i>	302 On Water Hardness, Alkalinity, and the Differing Effects of a 4-Way Mixture of Cd, Se, SO ₄ , and NO ₃ on Invertebrates <i>S. Bogart</i>
Ballroom AC	Deepwater Horizon Oil Spill – Five Years Later – Part 2 Emily Maung-Douglass, Robert Griffitt			
Ballroom B	306 Role of crude oil ingestion by zooplankton in the fate of crude oil spills in the sea <i>R. Almeda</i>	307 Impacts of the 2010 Deep Water Horizon oil spill on coastal and pelagic fish from the Gulf of Mexico <i>M. Grosell</i>	308 Toxicity of very thin surface slicks of Deepwater Horizon oil to Gulf of Mexico fish and invertebrate embryos and larvae <i>J. Morris</i>	309 The use of Eicosanomics to investigate adverse outcomes of DOSS exposure in the Chorioallantoic membrane <i>T. Cantu</i>
Ballroom C	Assessing Contaminant Effects in Multi-stress Ecosystems David Ostrach, Cameron Irvine			
Ballroom D	314 Bioavailability of organochlorine chemicals and molecular changes in fathead minnows from single and complex mixture exposures <i>V. Dang</i>	315 Effects of insecticides on stream invertebrates in soy production regions in South America <i>L. Hunt</i>	316 Coho Salmon Spawner Mortality in Pacific Northwest Urban Watersheds: Lethal Stormwater Impacts are Prevented by Soil Bioinfiltration <i>J. Sromberg</i>	317 From single-species to aquatic communities – How can we get the most for mixture toxicity assessments? <i>S. Hasenbein</i>
Ballroom E	Ecological Consequences of Exposure to Pharmaceuticals – Part 2 Heiko Schoenfuss, Daniel Caldwell, Silke Hickmann, Damia Barcelo, James Lazorchak			
Ballroom F	322 Evaluation of Prioritization Methods in Relation to Adverse Impacts of Pharmaceuticals on Fish Reproduction <i>M. Overturf</i>	323 Beyond emerging contaminants: bioactive transformation products and their implications for ecosystem health <i>D. Cwiertny</i>	324 Impacts of wastewater contaminant metformin on the reproductive system of fathead minnows (<i>Pimephales promelas</i>) <i>N. Niemuth</i>	325 Laboratory approaches to understanding gonadal development and abnormalities in wild-caught smallmouth bass (<i>Micropterus dolomieu</i>) <i>S. Kadlec</i>
Ballroom G	Direct and Indirect Effects of Current-Use Pesticides on Wildlife Christy Morrissey, Kathryn Kuivila			
Ballroom H	330 Evaluation of the relative risk to birds of alternative pesticides using USEPA's TIM/MCnest Model <i>M. Etterson</i>	331 Pyrethroid exposure affects avian immunity to West Nile virus <i>M. Jankowski</i>	332 Conspecific aggression, testosterone, & ornamentation of female bluebirds at a golf course: a case for disturbance induced disjointed signaling? <i>L. Gillespie</i>	333 Scaling pesticide impacts on Streaked Horned Larks (<i>Eremophila alpestris strigata</i>) from fields and flocks to landscapes and populations <i>D. Dishman</i>
Ballroom I	Mercury Fate and Biogeochemistry Nelson O'Driscoll, Sara Klapstein, Joao Canario			
Ballroom J	338 Periphyton Communities Methylate Mercury in an Industrially Contaminated Creek <i>T. Olsen</i>	339 Quantifying methylmercury photodemethylation rates in freshwater temperate lakes <i>S. Klapstein</i>	340 Use of Hg Stable Isotopes to Track Environmental Methylmercury Sources of Estuarine Fish <i>M. Li</i>	341 Using cysteine to quantify the biomagnification of methylmercury in aquatic food webs: A novel approach <i>J. Thera</i>
Ballroom K	Aquatic and Terrestrial Plants in Ecotoxicology and Risk Assessment Henry Krueger, Mark Hanson			
Ballroom L	346 Methodology for the derivation of aquatic plant water quality criteria <i>D. Eigner</i>	347 Ecosystem services approach to pesticide risk assessment and management of non-target terrestrial plants: recommendations from SETAC Europe workshops <i>G. Arts</i>	348 Risks posed to seagrass and mangrove communities from PSII herbicides: A case study from temperate Australia <i>V. Pettigrove</i>	349 Species Sensitivity Distributions for Non-Target Plant Studies <i>J. Green</i>
Ballroom M	Environmental or Analytical Chemistry General – Part 2 Methods John Kucklick			
Ballroom N	354 MIPs-DESI-MS/MS: A new way to monitor nitrosamines in water? <i>S. Egli</i>	355 Development of a Handheld Sensor System for the Detection of Heavy Metals in Water <i>C. Sullivan</i>	356 Characterization Techniques for Nanomaterials – Recent Analytical Developments <i>C. Stephan</i>	357 Development of LC-MS Techniques to Analyze Reproductive and Stress Steroid Hormones in Gray Whale (<i>Eschrichtius robustus</i>) Blubber <i>M. Gendron</i>
Ballroom O	Use of Molecular, Computational and Systems Biology Approaches to Advance Next Generation Ecological Risk Assessment Chairs: ----->			
Ballroom P	361 Enhancing high throughput toxicology – development of putative adverse outcome pathways linking ToxCast screening targets to relevant apical hazards <i>K. Fay</i>	362 Predicting biological effects of environmental mixtures using exposure:activity ratios (EAR) derived from USEPA's ToxCast data <i>B. Blackwell</i>	363 Evaluation of Toxicity Equivalent Calculations for Use with Data from In Vitro Aromatase Inhibition Assays <i>K. Watanabe</i>	364 Exploring the use of orthogonal high-throughput assay data for rapid human and ecological risk screening <i>E. Yost</i>
Ballroom Q	Assessing the Environmental Fate and Exposure of Engineered Nanoparticles Under Relevant Conditions Jerome Labille, Patrick Ollivier			
Ballroom R	370 Fast, accurate, and multivariate nanoparticle fate and effects modeling using moment methods <i>A. Dale</i>	371 Fate, transport and effects of nanoparticles of relevance to agriculture <i>J. Unrine</i>	372 Improving exposure assessment with bench scale testing for removal of nanoparticles during wastewater treatment <i>D. Tobias</i>	373 Monitoring of cerium dioxide and titanium dioxide nanoparticles by spICPMs and FEG-SEM imaging in Loire River water, France <i>K. Phalayong</i>
Track	Aquatic Toxicology and Ecology	Integrated Env Assessment and Management	Environmental or Analytical Chemistry	Linking Science and Social Issues

Tuesday Afternoon Platform Presentations

3:00-3:15		3:20-3:35		3:40-3:55		4:00-4:15			
"One Health": Opportunities for SETAC Leadership in Integrating Environmental Human and Animal Health Thomas Augspurger, Nil Basu									
287 Expanding environmental toxicology in One Health by studying the role of contaminants in complex health problems; case studies in Haiti and Kenya <i>T. Sabo-Attwood</i>		288 Comparative Pharmacology and Toxicology: An Integrative Bridge for the One Health Initiative? <i>B. Brooks</i>		289 Applying a Holistic Approach to Chemical Management to Improve Community Well-being <i>L. Kapustka</i>		290 Research on coal-tar-based sealcoat exemplifies the One Health concept <i>B. Mahler</i>			
Building a Weight of Evidence for Bioaccumulation Assessment Michelle Embry, Jon Arnot									
296 Preliminary results of the metabolic activity in alligator gar (<i>Atractosteus spatula</i>): A comparison with rainbow trout (<i>Oncorhynchus mykiss</i>) <i>K. Johanning</i>		297 Weight of evidence assessment of the PBT properties of cyclic volatile siloxanes (cVMS)-1 <i>J. Bridges</i>		298 Why excluding benthic invertebrate biotransformation in P and B assessment may jeopardize ERA of hydrophobic organic contaminants <i>H. Selck</i>		294 In Vitro to In Vivo Extrapolation of Hepatic Metabolism in Fish: An Inter-laboratory Comparison of In Vitro Methods <i>K. Fay</i>			
Modeling and Interpreting Effects of Metals Mixtures Eric Van Genderen, Kevin Brix									
303 Statistical determination of non-additivity in toxicity of metal mixtures to <i>Daphnia magna</i> <i>E. Traudt</i>		304 Chronic waterborne toxicity of binary mixtures of Ag, Cd, Cu, Ni, Pb and Zn to the freshwater snail <i>Lymnaea stagnalis</i> <i>A. Cremazy</i>		305 Mesocosm experiments evaluate metal mixture toxicity on aquatic insects <i>T. Schmidt</i>		Discussion			
Deepwater Horizon Oil Spill – Five Years Later – Part 2 Emily Maung-Douglass, Robert Griffitt									
310 Photo-enhanced Toxicity of Deepwater Horizon Spill Oil to Larval Red Drum and Speckled Seatrout <i>M. Alloy</i>		311 Effects of Deepwater Horizon oil and dispersants on various life stages of oysters <i>A. Volety</i>		312 Photo-enhanced Toxicity of Fresh and Weathered Macondo Crude Oils to Marine Organisms Exposed to Natural and Artificial Sunlight <i>B. Finch</i>		313 Toxic effects of Deepwater Horizon oil on early life-stage red drum and speckled seatrout <i>R. Takeshita</i>			
Assessing Contaminant Effects in Multi-stress Ecosystems David Ostrach, Cameron Irvine									
318 Developing New Diagnostic Tools for Stream Causal Assessment <i>K. Schiff</i>		319 Evaluating relations between stressors and ecological endpoints in streams at the regional scale <i>P. Van Metre</i>		320 One, two, too many; multiple stressors and the adaptive assessment, remediation and management of contaminated landscapes <i>W. Landis</i>		321 Climate Change and Ecological Risk Assessment for Contaminated Sites <i>L. Gaastrand-Tatro</i>			
Ecological Consequences of Exposure to Pharmaceuticals – Part 2 Heiko Schoenfuss, Daniel Caldwell, Silke Hickmann, Damia Barcelo, James Lazorchak									
326 Evaluation of conventional and alternative treatment of hospital and urban wastewater in the removal of antibiotics and antibiotic resistance genes <i>D. Barcelo</i>		327 Use of bioactivity tools to measure estrogenic mixtures below WWTPs with differing treatment technologies <i>K. Ketelle</i>		328 Development of the Coastal Biosensors for Endocrine Disruption (C-BED) Assay Reveals Implications for Human and Ecological Health <i>H. Poynton</i>		329 Protein expression profiles in early-life stages zebrafish (<i>Danio rerio</i>) exposed to triclosan <i>E. Falisse</i>			
Direct and Indirect Effects of Current-Use Pesticides on Wildlife Christy Morrissey, Kathryn Kuivila									
334 Assessing the Impact of Neonicotinoid Insecticides on Northern Bobwhite Quail (<i>Colinus virginianus</i>) in Texas <i>H. Ertl</i>		335 Neonicotinoid Pesticide use and potential exposure to Northern Bobwhite and Scaled Quail throughout the Rolling Plains of Texas and Oklahoma <i>U. Turaga</i>		336 Prevalence of pesticide active ingredients in food boluses of insectivorous Tree swallows in Quebec and Saskatchewan, Canada <i>C. Morrissey</i>		337 Effects Of Agriculture and Pesticide Use On Abundance of Six Aerial Insectivorous Bird Species Over 30 Years in Canada's Prairie Pothole Region <i>N. Michel</i>			
Mercury Fate and Biogeochemistry Nelson O'Driscoll, Sara Klapstein, Joao Canario									
342 Mercury biomagnification and contemporary food web dynamics in lakes Superior <i>M. Omara</i>		343 An overview of mercury biomagnification in predatory fish in lakes around major mercury emitters in western Canada and influencing factors <i>M. Evans</i>		344 Mercury levels in invading subarctic forage fish versus arctic forage fish in the eastern Canadian Arctic <i>S. Pedro</i>		345 Modeling mercury sources, aquatic cycling, and bioaccumulation in the Ohio River: implications for regulatory controls <i>R. Reash</i>			
Aquatic and Terrestrial Plants in Ecotoxicology and Risk Assessment Henry Krueger, Mark Hanson									
350 Factors affecting seed banks of riparian communities in an agricultural ecosystem: potential for conservation of native plant diversity <i>R. Dalton</i>		351 Development of a revised water quality standard for sulfate to protect wild rice (<i>Zizania palustris</i>) from elevated hydrogen sulfide in sediment <i>E. Swain</i>		352 Investigating iron and carbon controls on sulfide toxicity in wild rice mesocosms <i>S. Lafond</i>		353 Strength and Relevance Assessment for Phytoplankton Data as they Pertain to Atrazine: A Critical Review and Data Re-evaluation <i>L. Baxter</i>			
Environmental or Analytical Chemistry General – Part 2 Methods John Kucklick									
358 Development of a compact continuous submerged water samplers to monitor micropollutant time-weighted average concentrations <i>Y. Kameda</i>		359 Comparison of two green extraction methods, MSPD and QuEChERS, on low-polarity POPs in avian adipose tissue <i>R. Cooper</i>		360 Novel Molecularly Imprinted Polymers (MIPs) Thin-Films as selective sorbents for Trace Concentrations of Thiophene Compounds in Water <i>H. Hijazi</i>		Discussion			
<---- Title Kristin Connors, Jill Franzosa, Edward Perkins									
365 Establishing an AOP for the role of the vitamin D receptor in developmental neurotoxicity <i>S. Kullman</i>		366 Zebrafish Models For Human Acute Organophosphorus Poisoning <i>N. Vinas</i>		367 Comparative toxicology of the zebrafish and fathead minnow models: Understanding oxidative stress toxicity to design less hazardous chemicals <i>J. Corrales</i>		368 Link quantitative toxicogenomics endpoints to conventional toxicity endpoints – phenotypic anchoring and cross species extrapolation <i>N. Gou</i>			
Assessing the Environmental Fate and Exposure of Engineered Nanoparticles Under Relevant Conditions Jerome Labille, Patrick Ollivier									
374 Nanoparticle characterization in surface waters by multi-element single particle ICP-MS <i>A. Barber</i>		375 R-packages and graphical user interface tools for probabilistic exposure, effect, and risk assessments <i>F. Gottschalk</i>		376 Using network analysis to identify research tendencies and knowledge gaps in experiments with natural organic matter and engineered nanoparticles <i>N. Sani-Kast</i>		369 Determination of titanium dioxide nanoparticle heteroaggregation with suspended particulate matter in riverine surface waters <i>D. Slomberg</i>			
Regulatory Directions		Remediation/Restoration		Special Symposia		Terrestrial or Wildlife Toxicology and Ecology			
Track		Ballroom J		Ballroom I		Ballroom H		Ballroom G	
Presentation will not be recorded.								SETAC North America 36 th Annual Meeting 39	

Tuesday Poster Presentations

Schedule

Setup 7:00 a.m.–8:00 a.m.

Take Down 6:30 p.m.–6:45 p.m.

Presenters are expected to attend their poster during all break periods and evening poster social to discuss their work with scientists visiting their poster.

Coffee Breaks 9:15 a.m.–10:00 a.m. and 2:15 p.m.–3:00 p.m.

Lunch Break 11:15 a.m.–1:00 p.m.

Poster Social 5:00 p.m.–6:30 p.m.

Birds as Indicators of Ecosystem Health: Investigations of Molecular to Population Level Effects of Contaminant Exposure | Jonathan Verreault, Kim Fernie, Jessica Head

TP001 Understanding Organophosphate Flame Retardant In Vitro Metabolism in Herring Gulls (*Larus argentatus*) using Michaelis-Menton Enzyme Kinetic Parameters | *A. Greaves*

TP002 Assessment of metabolism and effects of *in ovo* exposure to a brominated flame retardant, TBBPA-BDBPE, in zebra finches | *M. Eng*

TP003 Investigating the Variability of Avian Exposure to Selenium Concentrations Found in Aquatic Ecosystems | *A. Jarvis*

TP004 Monitoring Avian Blood Lead Levels to Determine the Effectiveness of Remedy on the Anaconda Smelter Superfund Site | *K. Nelson*

TP005 A case study of trophic level effects on environmental contaminants monitoring: Lesser Flamingo and African Fish Eagle in South Africa | *L. Fuentes*

TP006 Bioaccumulation of Polychlorinated Biphenyls in Riparian Migratory and Resident Birds of Southeastern Mexico | *J. Herrera-Herrera*

Ecological Consequences of Exposure to Pharmaceuticals

Heiko Schoenfuss, Daniel Caldwell, Silke Hickmann, Damia Barcelo, James Lazorchak

TP007 Oxidative stress induced in *Hyalella azteca* by effluent from an NSAID-manufacturing plant in México | *K. Novoa-Luna*

TP008 Multiple exposure of the pharmaceutical using the *Daphnia* reproduction test | *N. Tatarazako*

TP009 Effect of three neuroactive compounds exposure on brain of common carp (*Cyprinus carpio*) using oxidative stress biomarkers | *E. Gasca*

TP010 Characterization of early gonadal development in smallmouth bass (*Micropterus dolomieu*) and effects of ethinyl estradiol on gonadal differentiation | *S. Kadlec*

TP011 Spatial Trends of Pharmaceuticals in an Urbanized Estuary: Influence of Wastewater Effluents in Narragansett Bay, RI, USA | *D. Katz*

TP012 Temporal trends of select pharmaceutical compounds entering an estuary from a small, urban river | *M. Cantwell*

Harmful Algal Bloom Toxins in Inland Waters: Environmental Contaminants of Emerging Concern | Bryan Brooks, Dawn Perkins, Christopher Nietz, Joel Allen, James Lazorchak, Stephanie Smith

TP013 Health-Based Cyanotoxin Guideline Values Allow for Cyanotoxin-Based Monitoring and Efficient Public Health Response to Cyanobacterial Blooms | *D. Farrer*

TP014 A watershed cooperative addresses short and long term perspectives for the management of harmful algae at a Southwestern Ohio drinking water reservoir | *C. Nietz*

TP015 Immunomodulatory potency of toxins produced by harmful algal blooms | *O. Adamovsky*

TP016 Total, Cellular, and Aqueous Microcystin-LR Following Laboratory Exposures of *Microcystis aeruginosa* to CuSO₄ and a Chelated Copper Compound | *K. Iwinski*

Mercury Fate and Biogeochemistry

Nelson O'Driscoll, Sara Klapstein, Joao Canario

TP017 The distribution of methylmercury in sediment, porewater, surface water, and Odonata Larva in the St. Louis River Estuary | *N. Johnson*

TP018 Microbial production of methylmercury in North Carolina Piedmont stream sediments | *P. Blum*

TP019 Methylmercury Transport Across the North Channel of the Tagus Estuary (Portugal) | *R. Cesário*

TP020 Assessing changes in dissolved organic matter quality and its effects on mercury bioaccumulation across a freshwater watershed | *G. Lescord*

TP021 Genotoxic endpoints following mercury exposure examined in *Caenorhabditis elegans* | *L. Wyatt*

TP022 A comparison of the toxicokinetics and bioaccumulation potential of mercury and polychlorinated biphenyls in goldfish (*Carassius auratus*) | *J. Li*

TP023 Relating foodstuffs and human hair to access mercurial exposure level in Poboya, Central Sulawesi, Indonesia | *M. Sari*

TP024 Maternal Methylmercury Exposure Through Rice Ingestion in Rural China | *C. Hong*

TP025 Monitoring of methylmercury and DOM over 3 years: Implications for mercury contamination in Kejimkujik National Park | *S. Klapstein*

TP026 The role of sulfur biogeochemistry in methylmercury formation in salt-marshes (Portugal) | *R. Cesário*

TP027 Spatial and temporal fluidity of invertebrate communities at a mercury-contaminated site and possible implications for fish mercury bioaccumulation | *M. Poteat*

TP028 Evaluating mercury bioaccumulation rates in fish using mark-recapture techniques | *T. Mathews*

TP029 Variability in percent methyl mercury (%MeHg) in fish; assessing the effect of fish ontogeny, diet, and tissue type on the ratio of THg to MeHg | *G. Lescord*

TP030 The impacts of water chlorination, dechlorination and other chemical use practices on mercury mobility at a mercury spill site | *D. Watson*

TP031 Mercury loading from floodplain soils in a southern Appalachian watershed | *J. Dickson*

TP032 Influence of reservoir water level fluctuations on sediment methylmercury concentrations downstream of the historical Black Butte mercury mine, OR | *J. Goulet*

TP033 Profiles of gut microbiota and methylmercury biomarkers among trimester 3 pregnant mothers | *S. Rothenberg*

TP034 A comparison of mercury biomagnification through lake food webs supporting brook trout and other fishes | *G. Lescord*

Assessing Contaminant Effects in Multi-stress Ecosystems

David Ostrach, Cameron Irvine

TP035 Using the American Bullfrog (*Rana catesbeiana*) as a Model to Evaluate for Long Term Effects of Waste Water Effluent on Growth and Development | *T. Sutton*

TP036 Genotoxic Damage From Detergent Exposure | *P. Abara*

TP037 Risk assessment of multiple stressors on macroinvertebrate communities in Mediterranean rivers | *M. Kuzmanovic*

Spatial and Temporal Trends of Classical and Emerging Pollutants in the Environment and Biota | Bommanna Loganathan, Kenneth Sajwan

TP038 A Consequence of Train-Based Transportation: Exposure and Effects of Rail Traffic on Lichens During a Five-Month Exposure | *J. Meyer*

TP039 Bisphenol A contamination levels in selected wastewater and river water samples from Kentucky and Georgia, USA | *K. Sajwan*

TP040 Per- and Poly-Fluoroalkyl Substances and Temporal Trends and in Relation to Diet in Polar Bears From Canadian Arctic Subpopulations in Hudson Bay | *R. Letcher*

TP041 Spatial and temporal trends of flame retardants in ringed seals from the Canadian Arctic | *M. Houde*

Aquatic and Terrestrial Plants in Ecotoxicology and Risk Assessment

Henry Krueger, Mark Hanson

TP042 Chlorophyll fluorescence spectra of beans grown under various light intensities | *O. Kalmatskaya*

TP043 Evaluation of laboratory and mesocosm algal studies: How do no observable effect concentrations compare? | *B. Glenn*

TP044 Evaluation of Sulfide Toxicity to Wild Rice Using a Laboratory-based Hydroponics Study Design | *S. Hall*

TP045 Review of Multispecies and Field Testing in Assessing Risk of Chemicals to Non-Target Plants in Agricultural Landscapes | *H. Krueger*

TP046 Seagrass biomarkers baseline in the Petenes Biosphere Reserve | *P. Ramirez Romero*

TP047 Statistical Assessment of Chemical Mixtures | *C. Teel*

TP048 The Impact of Variability in Non-Target Terrestrial Plant Studies on Endpoint Selection | *J. Staveley*

TP049 Three methods to assess the dose-response relationship between sulfide and wild rice (*Zizania palustris*): hydroponic, outdoor mesocosm, and field data | *E. Swain*

TP050 Combined effect of atrazine and UV-B radiations on photosynthetic activity of phytoplankton | *P. Juneau*

Deepwater Horizon Oil Spill – Five Years Later

Emily Maung-Douglass, Robert Griffitt

TP051 Identification and Characterization of Putative Obesogens in Crude Oil and Dispersants used in the Deepwater Horizon Oil Spill | *D. Spyropoulos*

TP052 Characterization of the dissolved fraction of PAH in mixtures of water and oil used during toxicity testing as part of the Deepwater Horizon NRDA | *C. Lay*

TP053 Status and results of the Trustee toxicity testing program conducted in support of the Deepwater Horizon Natural Resource Damage Assessment | *J. Morris*

TP054 Impacts of oil exposure during early life development stages in Sheepshead minnow (*Cyprinodon variegatus*) under different environmental factors | *D. Simning*

TP055 Toxicity responses of killifish (*Fundulus heteroclitus*) embryos exposed to saturate, aromatic, and polar fractions of Louisiana sweet crude oil | *R. Struch*

Track	Aquatic Toxicology and Ecology	Integrated Env Assessment and Management	Environmental or Analytical Chemistry	Linking Science and Social Issues
-------	--------------------------------	--	---------------------------------------	-----------------------------------

Tuesday Poster Presentations

TP056 Sorption of dioctyl sodium sulfosuccinate to Coastal Gulf of Mexico Sediment | *B. Adewale*
TP057 Interactive Effects of Mixtures of Phototoxic PAHs | *B. Finch*
TP058 Effects of Oil Spill Dispersants on Larval Development of Grass Shrimp, *Palaeomonetes pugio* | *P. Key*
TP059 Effects of sediment amended with Deepwater Horizon incident slick oil on the infaunal amphipod *Leptocheirus plumulosus* | *G. Lotufo*
TP060 Acute Exposure to a Chemically Dispersed Sweet Crude Oil Causes Neurosensory Lesions in *Brevoortia patronus* and Gill Lesions in *Trachinotus carolinus* | *D. Millemann*
TP061 In Vitro Exposure of Dolphin Lymphocytes to Louisiana Sweet Crude Oil and COREXIT | *N. Henry*
TP062 Crude oil and dispersant mixture induced reproductive and developmental defects in *Caenorhabditis elegans* | *Y. Zhang*

Ecotoxicology of Environmentally Relevant Nanomaterial Exposures

Helen Poynton, Jason Unrine, James Lazorchak

TP063 Species Sensitivity Distributions for Engineered Nanomaterials | *K. Garner*
TP064 Assessing the exposure to nanosilver and silver nitrate on fathead minnow gill gene expression and mucus production | *N. Vinas*
TP065 Chronic Effects of Silver Nanoparticles on Fingerling Persian Sturgeon (*Acipenser persicus*) | *J. Ali*
TP066 Quantifying Hydroxyl Radical Production from the Irradiation of Titanium Dioxide Nanoparticles | *J. Coral*
TP067 Sub-lethal effects of oxidative stress from UV-irradiated titanium dioxide | *C. Mansfield*
TP068 Presence of grazing organisms can amplify the negative effects of titanium dioxide nanoparticles on stream periphyton communities | *M. Wright*
TP069 Comparative assessment of aquatic risks to developing fish associated with organic and nanoparticle based sunscreen formulations | *S. Harper*
TP070 Photocatalytic effects of titanium dioxide nanoparticles on oyster hemocytes: in vitro studies under light and dark conditions | *J. Ward*
TP071 Effects of natural organic matter on copper oxide nanoparticle dissolution and biouptake kinetics in Gulf killifish (*Fundulus grandis*) embryos | *B. Castellon*
TP072 Determination of uptake and trophic transfer of multi-walled carbon nanotubes in freshwater species using microwave induced heating | *A. Parra*
TP073 Plastic Particles, a "Trojan Horse" for Pyrene: Studies with Oysters *Crassostrea virginica* | *T. Gaspar*

Chemicals of Emerging Concern in the Environment: Organic Flame Retardants

Da Chen, Robert Letcher

TP074 Characterization of polybrominated flame retardants (PBDE's) in waste materials from landfills located in Mexico City Metropolitan Area | *I. Gavilan*
TP075 Contamination status of organohalogen compounds and their hydroxylated metabolites in pet cats: effects on thyroid hormones homeostasis | *Y. Yamamoto*
TP076 Detection and quantification of 40 non-polybrominated diphenyl ether emerging flame retardants in a secondary WWTP | *M. Woudneh*
TP077 Diastereomeric Distribution of Hexabromocyclododecane (HBCD) in Livestock Products and in Livestock Feed | *M. Barghi*
TP078 Evaluating low dose Dechlorane plus exposure effects on bioavailability in the soil-mimic conditions | *J. Kim*
TP079 Levels of PBDDs and PBDFs in Residential and Firehouse Dust Samples in California and the Potential for Analytical Interference from PBDEs | *F. Brown*
TP080 Light microscopic evidence for direct ingestion as the principal BFR uptake pathway for house crickets in contact with BFR-treated furniture foam | *G. Estridge*
TP081 Linking Consumer Products to Flame Retardant Levels in Indoor House Dust | *S. Hammel*
TP082 Measurement of Organophosphate Flame Retardants in California Residential and Fire House Dust | *R. Gill*
TP083 Organophosphate Flame Retardant Hydrolysis and pH-Dependence in Aqueous Solutions: Kinetics and Mechanisms | *R. Letcher*
TP084 Spatial Distribution of Halogenated Flame Retardants in Mosses, Lichens, Algae and Soils of South Shetland Islands, Antarctica | *J. Kim*
TP085 Temporal comparison of concentrations and the bioaccessibilities of novel brominated flame retardants in dust collected from daycares in SK, Canada | *D. Saunders*

Use of Molecular, Computational and Systems Biology Approaches to Advance Next Generation Ecological Risk Assessment

Kristin Connors, Jill Franzosa, Edward Perkins

TP086 Quantitative High-Throughput Screening and Orthogonal Assays to Identify Modulators of the Vitamin D Receptor | *J. Franzosa*
TP087 Hypothesis testing with computational modeling: linking aromatase inhibition with plasma vitellogenin dynamics in fathead minnows | *W. Cheng*

TP088 Comparison of ToxCast in vitro HTS molecular initiating event data to in vivo fish exposures | *J. Crago*

TP089 High-Throughput Screening Assays to Identify Putative Modulators of Adipogenesis and Lipid Metabolism and Potential Application toward Ecotoxicology | *K. Connors*
TP090 *E. coli* live cell array reporter system as a screening tool for the biological effects of oil contaminated sediments | *D. Jung*
TP091 Functional Genomics by Transcriptome Analysis of Killifish Ovaries Exposed to Crude Oil | *S. Rana*
TP092 Transcriptome analysis of reproductive mechanisms associated with disrupted testes function in killifish exposed to crude oil | *C. Bentivegna*
TP093 Environmental monitoring of biofilm community structure with flow cytometry and computer visualization | *A. Zupanic*

"One Health": Opportunities for SETAC Leadership in Integrating Environmental Human and Animal Health

Thomas Augspurger, Nil Basu

TP094 "One Health": Opportunities for SETAC Leadership in Integrating Environmental Human and Animal Health | *T. Augspurger*
TP095 Fish Tumors and One Health: Public and Environmental Health Benefits from Efforts to Reduce Fish Tumor Prevalence Across North America | *F. Pinkney*
TP096 Adverse Health Outcomes of Endocrine Disrupting Chemicals Present in Hydraulic Fracturing Fluids | *V. Balise*
TP097 Conservation Medicine, EcoHealth and One Health: Evolving Paradigms Building Transdisciplinary Collaborations, Integrative Research and Local Capacity | *A. Aguirre*
TP098 One Health Case Study: Bridging Environmental and Public Health Concerns Post-DWH Oil Spill in Coastal Gulf Communities | *A. Kane*

Assessing the Environmental Fate and Exposure of Engineered Nanoparticles Under Relevant Conditions

Jerome Labille, Patrick Ollivier

TP099 Consequence of oxidative stress caused by the metal oxide nanoparticle ZnO in the nematode *Caenorhabditis elegans* | *L. Bush*
TP100 Copper Nanoparticle Induced Cytotoxicity to Nitrifying Bacteria used in Wastewater Treatment: A Copper Speciation Study by XAFS | *J. Clar*
TP101 Detection of Metal-Based Nanoparticles in Various Environmental Matrices using Single Particle ICP-MS | *C. Stephan*
TP102 Determination of nanosilver particles in environmental water | *S. Chen*
TP103 Form and toxicity of copper released into aquatic systems from conventionally and nano-sized copper treated lumber | *A. Parks*
TP104 NANOHETER – an ERA-NET SIINN Programme (2013-2016), Assessing the fate of manufactured nanoparticles released in surface water | *J. Labille*
TP105 Nanoparticles and bacterial biofilm interactions in natural waters: Implication for NPs mobility | *P. Ollivier*
TP106 Phytoavailability of Nanoparticles at low concentration using the RHIZOTest Protocol | *C. Layet*
TP107 Release of Micronized Copper Particles from Pressure Treated Wood Products | *K. Rogers*
TP108 The role of pesticides in stability of TiO₂ nanoparticles in natural waters | *P. Ollivier*

Mercury in Western North America: A Synthesis of Spatiotemporal Patterns, Biogeochemistry, Bioaccumulation and Risk

Collin Eagles-Smith, Chris Eckley, David Evers, Mark Marvin-DiPasquale

TP109 Decadal Trends in Fish Mercury Concentrations and Comparison to Health Criteria, Rocky Mountain National Park, USA | *K. Morris*
TP110 Mercury in Grand Portage: Tree Swallows as a Bioindicator of Terrestrial and Aquatic Health | *S. Libal*
TP111 Mercury in major tributaries of the Athabasca River in the Athabasca oil sands region of Northern Alberta, Canada | *J. Kirk*
TP112 Occurrence, transport and mobility of mercury, arsenic and antimony in the Yellow Pine mining district, Idaho, USA | *J. Holloway*

Building a Weight of Evidence for Bioaccumulation Assessment

Michelle Embry, Jon Arnot

TP113 In Vitro Fish Hepatic Metabolism: Overview of Ring-Trial to Evaluate Transferability, Intra- and Interlaboratory Reproducibility | *M. Embry*
TP114 Regulatory Perspective: Challenges in the Assessment of Aquatic Bioaccumulation of Pesticides | *J. Holmes*
TP115 Statistical Approach to Inform the Study Design of an Inter-laboratory Comparison of In Vitro Methods to Estimate Fish Hepatic Metabolism | *M. Embry*
TP116 The use of trout liver S9 fraction and cryopreserved hepatocytes in substrate depletion assays for the evaluation of fish xenobiotic biotransformation | *K. Johanning*
TP117 The Weight of Evidence (WoE) assessment of the PBT properties of the cyclic volatile siloxanes (cVMSs) - 2 | *K. Solomon*

Tuesday Poster Presentations

Today's TIE Toolbox - Applying Toxicity Identification Evaluation Design, Methods and Interpretation for Adaptive Management and Real-World Decision-Making

Marilyn O'Neill, Barry Snyder

TP118 Use of Zebrafish (*Danio rerio*) for assessing bioconcentration potential of pharmaceuticals | *L. Constantine*

TP119 Development of whole-sediment toxicity identification evaluation (TIE) techniques for use in Australia | *W. Mehler*

TP120 It's Toxic, Now What? Key Decision Points for Toxicity Identification Evaluations | *B. DeShields*

TP121 Toxicity reduction evaluation methods specific to dredged material elutriate evaluations | *A. Kennedy*

TP122 Developing Toxicity Identification Evaluation Test Strategies: When and How to Make Mid-Evaluation Changes | *W. Goodfellow*

TP123 Demonstration of a in-situ Toxicity Identification Evaluation (iTIE) System | *J. Daley*

TP124 Learn from what you know: adaptive use of TIE manipulations | *S. Fong*

TP125 The Utilization of Toxicity Identification Evaluation Procedures as an Investigative Tool for Wastewater Treatment Design in a Developing Country | *M. Chanov*

TP126 Effective Techniques for Isolating and Confirming Pathogen-Caused Toxicity | *D. Pillard*

Winning the Green Ribbon: Application of "Green Chemistry" in the Development of Products and Processes

TP127 California's Safer Consumer Products Program: Evaluating product-chemical safety using life cycle thinking | *D. Molin*

TP128 California's Green Chemistry Regulatory Authority and the Safer Consumer Products Program | *D. Molin*

TP129 GreenScreen: Looking Beyond the Benchmark | *T. Lewandowski*

TP130 Towards less hazardous industrial chemicals: Comparative behavioral toxicology of two fish models | *B. Steele*

Integrated Environmental Assessment and Management General - Part 1

Daniel Lavoie, Nilo Kemble

TP131 Exploring the predictivity of hazard-based chemical alternatives assessment methodologies and incorporation of exposure | *J. Tanir*

TP132 Critical Review of Lead Ecological Benchmarks in Sediment | *K. Cejas*

TP133 Evaluation of currently available methods for determining the hydrophobicity of surfactants | *P. Sun*

TP134 Integration of Natural Complex Substances into the USE-PA's Safer Choice Program Fragrance Criteria | *C. Rudisill*

TP135 Applying remote sensing to support environmental risk assessment: a case study of a polluted mexican basin | *J. Zamora-Almazan*

TP136 Implications of Contamination in Rainwater Harvesting: Accumulation of Persistent Organic Pollutants in Irrigated Soil and Garden Vegetables | *S. Hileman*

TP137 A Comparison of Environmental Assessment Requirements of New Human Drugs in the US and the EU | *T. Lunsman*

TP138 USEPA's Probability-based Reassessment of Chemical Residues and Fatty Acids in Great Lakes Fish | *L. Stahl*

TP139 Metals, hidrocarbons and biomarkers in sediments and oysters of five Mexican coastal lagoons | *P. Ramirez Romero*

TP140 The exposure assessment of new POPs in multimedia and development of monitoring technology for POPs alternatives | *J. Kim*

TP141 Construction and demolition waste as substrate for plants: Risk assessment and environmental performance | *M. Machado*

TP142 Progressive Risk Assessment of Polychlorinated Biphenyls through the Total Diet Study in the Korean Population | *J. Kim*

TP143 Alkylated Polycyclic Aromatic Hydrocarbons in Fish - A Perspective on Crude Oil Train Derailments | *A. Pawlisz*

TP144 Proxy constituents of chemical mixtures in domestic wastewater for prospective risk assessment | *J. Diamond*

TP145 Extraction and non-destructive cleanup for mixtures of volatile and semi-volatile chemicals in fish tissue | *K. Löfstrand*

Remediation/Restoration General

TP146 An Operational Framework for Controlling Work Flow and Data Hygiene When Preparing Complete and Useable Data Sets for Multiple End Users | *K. Fletcher*

TP147 Biomonitoring in Chickens Raised on Mercury Contaminated Floodplain Soils | *T. Bingman*

TP148 Bioremediation of hydrocarbon contaminated soil and water in the vicinity of a telecom service provider plant, using concerted biotechnologies | *I. Onwurah*

TP149 Bioturbation facilitate degradation of oil components in coastal sediments through activation of microbial community | *N. Deb Adhikary*

TP150 Development Of An Interagency Guidance To Improve The Reliability Of Data Collected To Support Ecological Restoration Projects | *L. Blume*

TP152 Engineered plant for phytoremediation of environmental contaminant-the current state of affairs | *R. Anyasi*

TP153 Influence of pyrolysis temperature on the physicochemical properties and herbicide adsorption of agricultural waste-derived biochar | *Y. Li*

TP154 Monitoring residues and effects of lead contamination in a wetland: In situ exposures with southern leopard frog (*Lithobates sphenocephalus*) tadpoles | *S. Krest*

TP155 Monitoring the Natural Attenuation of Chlorobenzenes in Groundwater | *R. Zajac*

TP156 Relationships between PAHs and Sediment Setting in River Sediments from Detroit, Michigan | *J. Cole*

TP157 Restoring a reservoir to its historic stream configuration to reduce salinity and selenium exposure in birds at Hailstone National Wildlife Refuge | *D. Rouse*

TP158 Striking a Balance Between Remedial Goals and Habitat Function: An Exercise in Consensus Building | *K. Hoffman*

TP159 Variations in Soil TPH Risk Evaluation and Impacts to Remediation Decision-Making | *K. Patel-Coleman*

Micoplastics

TP160 Chemical Adsorption of Hydrophobic PAHs in the Marine Environment onto Microplastic Polymers and Subsequent Desorption in a Simulated Fish Gut | *C. Crawford*

TP161 Sorption of persistent organic pollutants to two bio-based polymers, polylactic acid and polyhydroxylkanoate | *K. Uhlig*

TP162 Investigations of polychlorinated biphenyl release from engineered solids under shallow and deep ocean conditions | *R. George*

TP163 Assessing the effects of polyethylene microbeads on juvenile hard clams (*Mercenaria mercenaria*) | *H. Wertz*

TP164 Ingestion of microplastics by *Daphnia magna* and reproductive effect | *P. Canniff*

TP165 Presence and toxicity of microplastics in the Canadian aquatic environment: A review | *J. Anderson*

TP166 Macroplastic trash: the visible pollutants in osprey (*Pandion haliaetus*) nests in Chesapeake and Delaware Bays | *R. Lazarus*

TP167 Microplastic Contamination in San Francisco Bay | *R. Sutton*

TP168 Ecological and human health risk from persistent organic pollutants sorbed to microplastics in the marine environment: What does the evidence tell us? | *L. Ziccardi*

TP169 Understanding the Ecological effects of North Pacific Gyre Plastics using In Vitro Models | *S. Coffin*

Environmental or Analytical Chemistry General - Part 2

TP170 A new delivery system of individual PAHs from droplets to study their dissolution rates | *K. Sandoval*

TP171 A Robust, High Throughput Method for Measurement of Tricosan and Bisphenol Residues in Duplicate Diet Samples | *S. Clifton*

TP172 Active In Situ Field SPE Extraction Techniques and Advantages for Compliance Monitoring | *B. Hepner*

TP173 Adsorption Characteristics of Arsenic (V) from Water Using Cattle Bone Char | *S. Begum*

TP174 Application of a Solid Phase Extraction-LC/MS/MS Method for Determination of Cyanotoxins in Ambient Water During the 2015 Cyanobacteria Bloom Season | *D. Dettenhorst*

TP175 Changes to the Method Detection Limit Calculation May Pose Regulatory Problems | *N. Love*

TP176 Comparison of GC-HRMS and GC-MS/MS Methods for the Determination of Persistent Organic Pollutants in Human Serum | *S. Crispo Smith*

TP177 Degradation Products as Surrogates for Hazard Assessment of Readily Degradable Substances | *T. Lunsman*

TP178 Developments in high throughput analysis of neonicotinoids pesticides using molecularly imprinted polymers with desorption electrospray ionization-MS | *J. Gauthier*

TP179 Drying and storage methods affect cyfluthrin concentrations in exposed plant and soil samples | *M. Moore*

TP180 Honey comb-like nanocomposite based on magnetic macrofungus biomass for selective removal of boron | *A. Oladipo*

TP181 Method Development and Monitoring of Cylindrospermopsin and Anatoxin-a in Ambient Waters | *J. Shoemaker*

TP182 Preliminary study about the removal of Methylparaben using ecological filtration, Brazil | *C. Moço Erba Pompei*

TP183 Rapid analysis of glycols and glycol ethers in aqueous samples by HPLC/MS/MS | *J. Gundersen*

TP184 Rapid GC-ECD method for quantitative analysis of 63 pesticides optimized for use with silicone wristbands and low density polyethylene | *R. Scott*

TP185 Simultaneous Analysis of hormones of bowhead whale (*Balaena mysticetus*) utilizing Ultra-Performance Liquid Chromatography tandem mass spectroscopy | *S. Usenko*

Track

Aquatic Toxicology and Ecology

Integrated Env Assessment and Management
--

Environmental or Analytical Chemistry

Linking Science and Social Issues

Tuesday Poster Presentations

TP186 Simultaneous analysis of thirteen endogenous steroid hormones by liquid chromatography mass spectrometry with atmospheric pressure photoionization | *B. Blackwell*

TP187 The adsorptive properties of peanut and coconut husk powders and their utility in batch and stirred tank flow reactors for the treatment of wastewater | *T. Ozulumba*

TP188 Validation of Sulfuric acid digestion of Titanium dioxide nanoparticles in multiple Environmental Matrices | *P. Watkins*

Aquatic Toxicology and Ecology General - Part 2 | Scott Belanger

TP189 Acute toxicity of heavy metal and locomotor behavior in *Heterocypris incongruens* (Crustacea: Ostracoda) | *Y. Jeong*

TP190 Acute toxicity of NaCl and Na₂SO₄ mixtures to juveniles of a freshwater unionid mussel (fatmucket, *Lampsilis siliquoidea*) | *C. Ivey*

TP191 Application of benchmark dose response models to derive ecotoxicity points of departure for multi-walled carbon nanotubes | *R. Bjorkland*

TP192 Assessing variability in chemical acute toxicity of unionid mussels: Influence of intra- and inter-laboratory testing, life stage, and species | *S. Raimondo*

TP193 Assessment of Ecological Risk and Identification of Risk-Reduction Measures in an Urban Stream with Heterogeneous Zinc Contamination in Sediment | *K. Durocher*

TP194 Ecosystem and limnological influences on mercury in lake food webs across Nova Scotia | *L. Campbell*

TP195 Ecosystem-Scale Selenium Modeling of Phosphate and Mountaintop Coal Mining Regions of Idaho, West Virginia, and British Columbia | *T. Presser*

TP196 Effect of age on the variability of cadmium toxicity to *Daphnia magna* neonates | *S. Smith*

TP197 Effect of Body Length on Metal Concentrations in Mako and Thresher Sharks | *J. Dutton*

TP198 Effect of Salinity Level on the Hemoglobin Protein of *Chironomus riparius* Larvae for Three Generations | *Z. Alali*

TP199 Effects of an Industrial Basin Overflow on Trace Element Accumulation in Sediment and Biota of a Coastal Plain Stream | *A. Lindell*

TP200 Full life-cycle sensitivity of the mayfly *Neocloeon triangulifer* (Ephemeroptera: Baetidae) to copper and zinc | *J. Miller*

TP201 Heavy Metal-Resistance in Snails Originating from Tar Creek Superfund Site | *A. Simpson*

TP202 Humic Acid Mitigation in the Assessment of Chemicals under the Toxic Substances Control Act (TSCA) | *T. Wright*

TP203 Influence of a volcanic eruption on potentially toxic elements in the food web from an ultra-oligotrophic Patagonia lake | *L. Campbell*

TP204 Land Use Effects on Trace Element Accumulation in Sediment and Biota of Coastal Plain Streams | *D. Fletcher*

TP205 Legacy Contaminants in Aquatic Biota Associated with Nuclear Weapons Material Production on the Savannah River Site | *A. Bryan*

TP206 Meta-analysis of aquatic chronic chemical toxicity data | *D. Hoff*

TP207 Mitochondria-rich cells isolated from gills of the seawater clam *Modiolus modiolus* for use in toxicological studies with copper | *L. Nogueira*

TP208 Modeling the effects of initial density and copper on competition between *Pseudokirchneriella subcapitata* and *Chlorella vulgaris* | *Y. Kim*

TP209 New Decision Support Tools for the Assessment of Species Sensitivity Distributions | *S. Belanger*

TP210 Refinery Effluent Toxicity: Is Arsenic and/or Selenium the Primary Toxicant – an Investigation | *K. Mierau*

TP211 Toxic Effects of a Complex Metal Mixture on Aquatic Insects Across Multiple Levels of Biological Organization | *S. Duggan*

TP212 Transgenerational effects of cadmium and tributyltin in the great pond snail, *Lymnaea stagnalis* | *E. Reategui-Zirena*

TP213 Use of Empirical and Modeled Data to Predict Toxicity Using the USEPA Test of Significant Toxicity | *J. Westfall*

TP214 Dose dependent modulation of in vitro phagocytic activity, cell proliferation and cytokine production of amphibian immunocytes by heavy metal exposure | *U. Jayawardena*

TP215 Evaluation of chronic (4- to 12-week) effects of sodium chloride on growth of juvenile mussels (*Lampsilis siliquoidea*) in water-only exposures | *N. Wang*

TP216 Development of an auto-feeding system for culture and toxicity testing with newly transformed freshwater mussels | *J. Kunz*

New Look, Same Analytical Excellence

Welcome to SETAC from the team at AXYS Analytical Services Ltd
Proudly Serving Your Analytical Chemistry Needs for Over Four Decades

Regulatory Directions

Remediation/Restoration

Special Symposia

Terrestrial or Wildlife
Toxicology and Ecology

Track

22nd SETAC Europe LCA Case Study Symposium

Montpellier, France

Save the date!

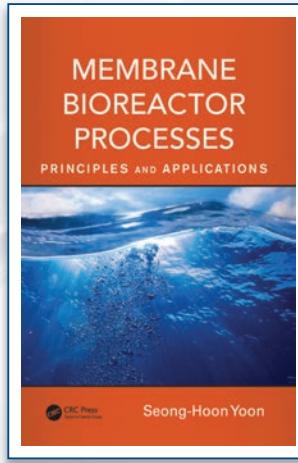
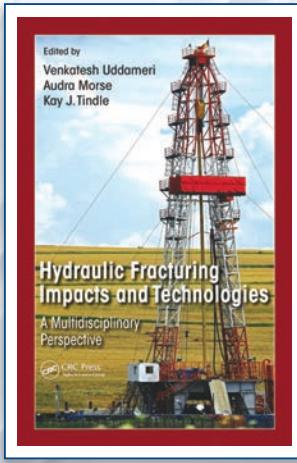
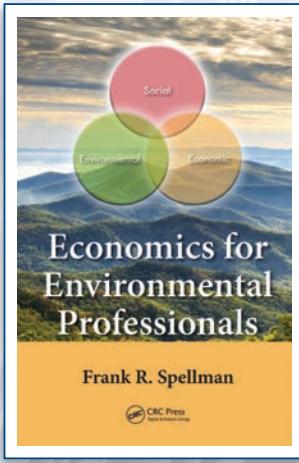
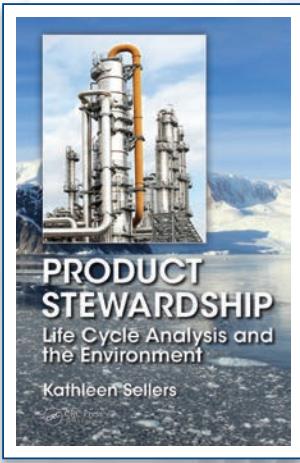
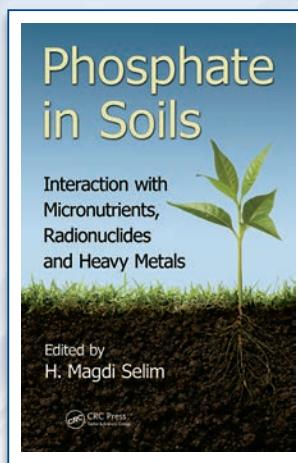
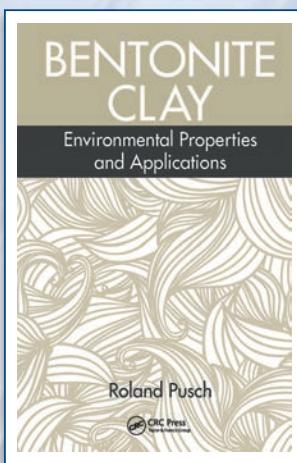
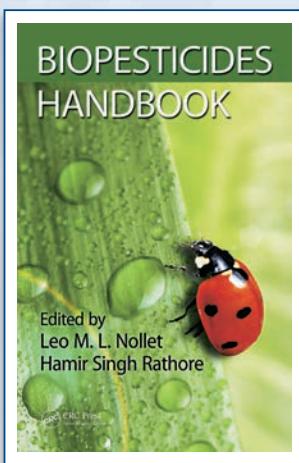
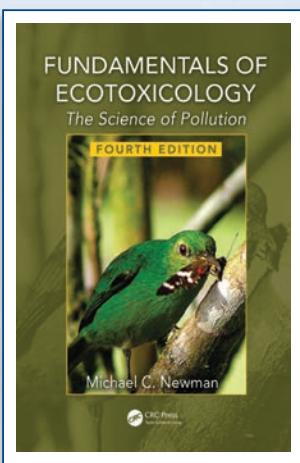
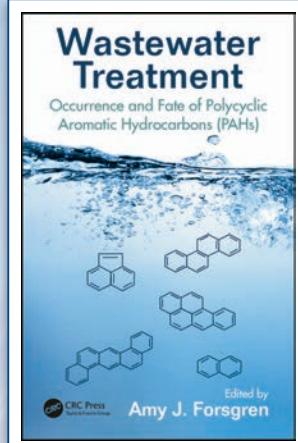
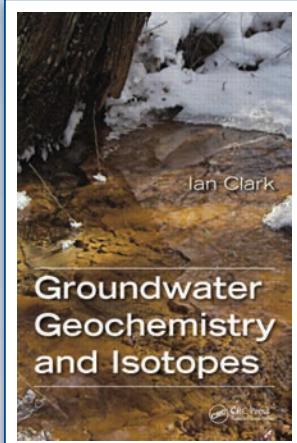
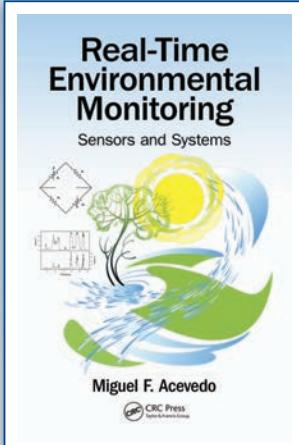
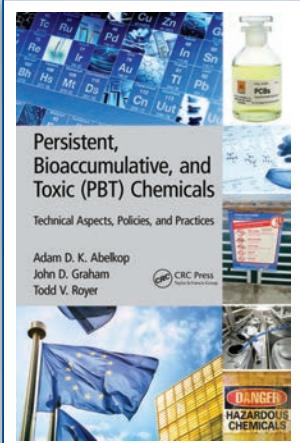
Welcome to the 22nd SETAC Europe LCA Case Study Symposium, to be held from **20-22 September 2016** in Montpellier, France.

The symposium will be co-organised with Irstea and ELSA-PACT Chair.

Montpellier, the French place to go to!

Less than three hours from Barcelona and Italy, and just 11kilometers from the Mediterranean Sea in the heart of the Languedoc-Roussillon region in the South of France, Montpellier is the ideal holiday destination, a historic, effervescent city with attractions that rank among the most prestigious world heritage sites.

International festivals, dance, music, world-class exhibition at the Fabre Museum... a ton of events in Montpellier.













From its medieval narrow streets - a must for shopping! - to the new districts designed by the greatest architects of our time, get ready to fall in love!

NOTES

A Special Offer on Definitive Books for the Discerning Environmental Professional

Stop by Our Booths and **GET UP TO 50% IN EXTRA SAVINGS**

SETAC Booths #306 / 406

Receive FREE STANDARD SHIPPING when you order at the booths or online at www.crcpress.com

CRC Press
Taylor & Francis Group

CRC Press
Taylor & Francis Group

Want to Publish with Us?

Stop by Our Booths and Talk with Our Editors

CRC Press/Taylor & Francis is currently seeking new authors and volume editors for textbooks, handbooks, and reference books covering new developments in the environmental sciences.

If you've ever considered writing a book on your area of expertise, this is your chance.

Authors and editors receive royalties on worldwide sales of print and electronic products, and are entitled to a discount on CRC Press/Taylor & Francis books.

If you are an interested author or editor, or simply have an idea that you wish to share, please contact Joe Clements or Irma Britton.

SETAC Booths #306 / 406

Joe Clements
Senior Acquisitions Editor for Environmental Engineering
Tel: +1 (561) 361 6016
Email: joseph.clements@taylorandfrancis.com

Irma Britton
Acquisitions Editor for Environmental Sciences
Tel: +1 (561) 361 6067
Email: irma.britton@taylorandfrancis.com

Wednesday 4 November

General Opening Hours

TIME	AREA	LOCATION
7:00 a.m.–6:00 p.m.	Registration	East Registration
8:00 a.m.–6:30 p.m.	Poster Viewing and SETAC Store	Exhibit Hall
9:00 a.m.–6:30 p.m.	Exhibitions	Exhibit Hall

Daily Schedule

TIME	EVENT	LOCATION
7:00 a.m.–8:00 a.m.	Poster Setup	Exhibit Hall
8:00 a.m.–9:15 a.m.	Morning Platform Sessions	See session listing
9:00 a.m.–2:30 p.m.	Make-A-Difference Service Project	
9:00 a.m.–11:00 a.m.	Career Navigation for Students and Recent Graduates	Exhibit Hall
9:15 a.m.–10:00 a.m.	Coffee Break	Exhibit Hall
10:00 a.m.–11:15 a.m.	Morning Platform Sessions cont'd	See session listing
11:00 a.m.–12:00 p.m.	Advisory Group Summit – Fostering Collaboration	250 CF
11:15 a.m.–1:00 p.m.	Student Noontime Seminar	254 ABC
11:15 a.m.–1:00 p.m.	Lunch Break	
1:00 p.m.–2:00 p.m.	NASAC Open Student Assembly	254 ABC
1:00 p.m.–2:15 p.m.	Afternoon Platform Sessions	See session listing
2:15 p.m.–3:00 p.m.	Coffee Break	Exhibit Hall
3:00 p.m.–4:15 p.m.	Afternoon Platform Sessions cont'd	See session listing
4:30 p.m.–5:15 p.m.	Keynote Speaker: Elaine Dorward-King	Ballroom AC
5:00 p.m.–6:30 p.m.	Poster Social	Exhibit Hall
6:00 p.m.–8:00 p.m.	4th Annual Career Networking Reception	Room 253
9:00 p.m.–Late	Student Mixer (ticket required)	The Hotel and Club Elevate

Business Meetings

TIME	MEETING	LOCATION
7:00 a.m.–8:30 a.m.	Sediment Advisory Group	251 F
7:00 a.m.–9:00 a.m.	North America Membership Committee	250 CF
8:00 a.m.–6:00 p.m.	Global Horizon Scanning Workshop	150 G
9:00 a.m.–10:30 a.m.	North America 2016 Program Committee Meeting	251 D
10:00 a.m.–11:00 a.m.	Career Development Committee	251 E
11:00 a.m.–12:00 p.m.	Advisory Group Summit - Fostering Collaboration	250 CF

Business Meetings cont'd

TIME	MEETING	LOCATION
11:45 a.m.–12:45pm	Professional Training and Education Committee	251 E
11:45 a.m.–1:15 p.m.	Midwest Regional Chapter	251 D
12:00 p.m.–1:00 p.m.	Nano Advisory Group	251 F
12:00 p.m.–1:00 p.m.	Public Outreach Committee	151 G
1:00 p.m.–2:00 p.m.	North America Awards and Fellowships Committee	251 E
1:00 p.m.–2:00 p.m.	Omics Working Group	151 G
2:00 p.m.–5:00 p.m.	North America Board of Directors Meeting	250 CF
4:00 p.m.–5:00 p.m.	Pharmaceuticals Advisory Group	251 D
5:00 p.m.–6:00 p.m.	Carolinias Regional Chapter	251 F
5:00 p.m.–7:00 p.m.	Plant Advisory Group Open Meeting	251 D
6:30 p.m.–7:30 p.m.	Bioaccumulation Science Advisory Group	251 E

STUDENT MIXER

THE HOTEL AND
CLUB ELEVATE

9:00 P.M.–LATE | \$20

Expect drinks, music and dancing! Tickets include two drinks. Drinking age 21+. Transportation will not be provided but the venue is within walking distance of the convention center. Everyone is welcome.

Make-a-Difference Service Project

9:00 a.m.–2:30 p.m. | US\$10

FRIENDS of
Great Salt Lake

The event will include an outreach education opportunity involving elementary school students from the local community as well as a service project, the “Great Salt Lake Area Cleanup” partnered with Friends of Great Salt Lake. The location will be in the Great Salt Lake South Shore. Round trip transportation from the SLC convention center to the cleanup site, cleanup materials and lunch will be provided. Please dress appropriately and be prepared for rain or snow. The event will be held rain or shine.

In addition, SETAC will donate money collected for registration for this event and match the amount to make a donation to Friends of Great Salt Lake. Friends of the Great Salt Lake

You can sign up when you register for the meeting or add this outreach opportunity to your existing registration. Join us and give back to this community by helping protect and cleanup this valuable natural resource!

THANK YOU TO OUR SERVICE PROJECT SPONSOR:

RAMBOLL ENVIRON

Final day to play exhibitor bingo!
Hand in your card by noon and join the drawing during the Poster Social.

Student Noontime Seminar

Communicating Risk in 140 Characters or Less

11:15 p.m.-1:00 p.m. | 254 ABC | Free but pre-registration required

Emily Skor

Vice President, Communications, Consumer Healthcare Products Association (CHPA) and Executive Director, CHPA Educational Foundation

Communicating risk and doing it well requires an understanding of core communications principles

and an appreciation for how your key audiences want to receive information. This holds true whether you are talking to fellow toxicologists, other scientists or non-scientists. Learn how to talk to an audience on their terms, so they understand what you are trying to convey and react accordingly. Whether you are talking to consumers, reporters, business leaders, policy-makers or your scientific colleagues, similar principles apply – know your audience, know their bias, know how they digest information, know

how they will judge the quality of your scientific results and know how they react emotionally to the notion of risk. When you effectively communicate the relevance and quality of your data you minimize the odds that people will misinterpret and make poor decisions as a result. Join Skor as she discusses why sound communications practice is equally as important as sound scientific practice.

THANK YOU TO OUR STUDENT NOONTIME SEMINAR SPONSOR:

Daily Keynote Speaker

4:30 p.m.-5:15 p.m. | Ballroom AC

Elaine Dorward-King

Executive Vice President of Sustainability and External Relations, Newmont Mining Corporation

Past SETAC North America President, Elaine Dorward-King, will discuss her experience developing and implementing

sustainable development, safety, health and environmental strategy and programs in the mining, chemical and engineering consulting sectors. Dorward-King was elected Executive Vice President of Sustainability and External Relations for Newmont Mining Corporation in March 2013. Prior to joining Newmont, she served as Managing Director of Richards Bay Minerals in South Africa from December 2010 through February 2013. Dorward-King previously served as the Global Head of Health,

Safety and Environment at Rio Tinto from 2002 through 2010 and also held leadership positions with Rio Tinto's copper and borates businesses. Prior, she worked for Ebasco Environmental and Monsanto as a chemist, research specialist and product manager. She brings 27 years of leadership experience in developing and implementing sustainable development, safety, health and environmental strategy and programs in the mining, chemical and engineering consulting sectors. She holds a B.S. magna cum laude from Maryville College and a Ph.D. in Analytical Chemistry from the Colorado State University. She serves on the boards of two non-profit organizations, Resources for the Future and Project WET.

4th Annual Career Networking Reception

6:00 p.m.-8:00 p.m. | Room 253 | Cost: \$30

Recognize, Reassess and Redefine: How to Take Control of Your Career and Take it to the Next Level

Interested in recharging your career and engaging with other SETAC professionals from different sectors? This reception is hosted by the Career Development Committee and is geared towards early to mid-career professionals. There will be two

guest speakers, followed by informal networking opportunities with senior SETAC professionals. The cost is \$30 and includes two drink tickets and light snacks.

Wednesday Morning Platform Presentations

	8:00-8:15	8:20-8:35	8:40-8:55	9:00-9:15
250 AB	Munitions Compounds in the Environment: Release, Transport, Transformation, Exposure, Effects and Remediation Robert George, Guilherme Lotufo 377 Overview of environmental risks posed by underwater military munitions <i>G. Lotufo</i>	378 Techniques and Results of a Deep-Water Munitions Assessment <i>M. Edwards</i>	379 A User-Friendly Graphic Model for the Release Rate of Munitions from A Breached Shell in Marine Environment <i>P. Wang</i>	380 Corrosion Evaluation of Underwater Military Munitions Recovered after 65+ Years <i>R. George</i>
250 DE	Sturgeon Ecotoxicology: Contaminant Risks to Endangered Populations Markus Hecker, Donald Tillitt, Jonathon Doering 385 Sublethal effects on behavior of white sturgeon (<i>Acipenser transmontanus</i>) exposed to copper <i>H. Puglis</i>	386 Linking magnitude of compensatory responses to life-stage specific sensitivity of white sturgeon (<i>Acipenser transmontanus</i>) exposed to metals <i>S. Tang</i>	387 LA-ICP-MS to examine temporal metal signatures in pectoral fin rays of white sturgeon (<i>Acipenser transmontanus</i>) from San Francisco Bay <i>V. Palace</i>	388 Physiological Changes in Juvenile White Sturgeon (<i>Acipenser transmontanus</i>) Exposed to Dietary Selenomethionine <i>J. Zee</i>
251 AB	Recent Advances in Endocrine Disruptor Screening - Applications for Ecotoxicology Katherine Coady, Patience Browne 393 Use of OASIS Estrogen/Androgen Receptor Binding QSAR Predictions in Combination with In Vitro ToxCast Assays <i>K. Coady</i>	394 Integrated Bioactivity-Exposure Ranking of the EDSP Chemical Universe <i>P. Browne</i>	395 Developmental plasticity induced by ethynodiol in the self-fertilizing mangrove rivulus <i>A. Voisin</i>	396 Application of a Framework for Extrapolating Chemical Effects Across Species in Pathways Controlled by Estrogen Receptor-α <i>C. LaLone</i>
Ballroom AC	Canadian Oil Sands: Advancing Science for an Expanding Industry - Part 1 Richard Frank, Jonathan Martin 400 Update on Atmospheric Deposition and Assessment of Effects of Contaminants in the Athabasca Oil Sands <i>J. Charland</i>	401 Assessing Forest Health in the Athabasca Oil Sands Region of Alberta <i>K. Percy</i>	402 Measurement of polycyclic aromatic compounds in epiphytic lichens by GCMS and GC-TOF-MS for receptor modeling in the Alberta Oil Sands Region <i>W. Studabaker</i>	403 Spatial and temporal trends of polycyclic aromatic compounds in the Athabasca oil sands region in Sphagnum moss and peat cores <i>J. Martin</i>
Ballroom B	Systems Biology Approaches for Advancing Adverse Outcome Pathways for Risk Assessment Cheryl Murphy, Natalia Vinas 408 Accelerating Adverse Outcome Pathway Development via Systems Approaches <i>S. Edwards</i>	409 A three-tiered approach for linking pharmacokinetic considerations to the adverse outcome pathway framework for chemical-specific risk assessment <i>C. Tan</i>	410 Use of High Throughput and Computational Approaches for Endocrine Disruptor Screening <i>D. Dix</i>	411 Applications of neurobehavioral analysis in AOP models and risk assessment <i>M. Carvan</i>
Ballroom D	Aquatic Toxicology and Ecology General - Part 1 Jim Oris 416 Brominated flame retardants: Evidence for altered thyroid signaling and neurological development in <i>Xenopus laevis</i> tadpoles <i>M. Sellin Jeffries</i>	417 Assessing Relationships for Guideline Derivation: Water Hardness and Chloride Toxicity towards Aquatic Life <i>J. McIvor</i>	418 Developing Toxicity Test Protocols for Native Arabian Gulf Species for Coastal Marine Zone Risk Assessment <i>S. Saeed</i>	419 Evaluation and improvements of a mayfly, <i>Neocloeon (Centroptilum) triangulifer</i> (Ephemeroptera: Baetidae) toxicity test method <i>J. Lazorchak</i>
Ballroom E	Alternatives Assessment - Current Technical Challenges in Implementation Alex Stone, Jay Tunkel, Timothy Malloy 424 Evaluation of the Interstate Chemicals Clearinghouse (IC2) Alternatives Assessment Guide <i>J. Rutkiewicz</i>	425 From Incremental to Fundamental Chemical Substitution: Addressing the Lock-In Problem <i>P. Fantek</i>	426 Methylene Chloride Paint Strippers Alternatives Analysis: Hazard Screening Using GreenScreen® for Safer Chemicals <i>B. Wang</i>	427 Multi-Criteria Decision Analysis methods as a framework for comparative risk assessment and in the case of insecticide use in pome fruit production <i>J. Pouzou</i>
Ballroom F	Fate and Effects of Metals: Biogeochemical Perspective Richard Carbonaro, Kevin Rader 432 Development of a Passive Lignin Porewater Sampler for Metals <i>S. Clough</i>	433 Effect of NOM and water hardness on DGT prediction of bioaccumulation by yellow lampmussel and fathead minnow <i>G. Mills</i>	434 Accumulation of Rare Earth Elements onto naturally occurring biofilms at three acid mine drainage field sites <i>L. Ashby</i>	435 Trace elements in bivalve shells: Records of contamination or contaminated record? <i>W. Shoultz-Wilson</i>
Ballroom G	Using Population Models to Improve Ecological Risk Assessment: Balancing Complexity With Practicality Christopher Salice, Nathan Schumaker, Robert Pastorok 440 Bringing ecological context to endangered species risk assessments using population modeling: challenges, opportunities, and a path forward <i>K. Kapo</i>	441 Quantifying the population-level effects of wind energy development and white-nose syndrome on the federally endangered Indiana bat <i>R. Erickson</i>	442 Spatially explicit case study of estuarine fish following the Deepwater Horizon Oil spill: evaluating tradeoffs in model complexity <i>S. Raimondo</i>	443 How does temporal variability in model parameters affect the risk conclusions from MCnest? <i>M. Etterson</i>
Ballroom H	EDCs and Pharmaceuticals in the Environment Marc Mills, James Lazorchak, Kyle Fetter, Ruth Marfil-Vega 448 The Effects of DOM on the Photochemistry and Toxicity of Photoproducts of Triclosan and Triclocarban and their Mixtures to <i>Daphnia magna</i> <i>K. Albanese</i>	449 Fate and biologic effect of progesterone exposure in aquatic sediment <i>S. Bartelt-Hunt</i>	450 Inputs and transboundary fluxes of organic contaminants in the Lower Red River, Manitoba, Canada <i>L. Cuscito</i>	451 Assessing the occurrence of wastewater contaminants in Cambridge Bay, Nunavut: Interpretation and recommendations <i>L. Chaves-Barquier</i>
Ballroom I	Pesticide Dose and Exposure: Effects on the Environment, Target and Non-Target Organisms Keith Solomon 456 Pesticide dose: Using conceptual models of exposure to understand risks <i>K. Solomon</i>	457 Indirect effects of herbicides on biota in edge-of-field habitats: current understanding and research needs <i>R. Prosser</i>	458 Monitoring unintentional effects of plant protection products and other environmental contaminants on non-target species: how can we manage? <i>P. Berry</i>	459 Improvements on the Methodology for Assessing the Effects of Commercial Test Substances on Beneficial Non-Target Honey Bees in a Laboratory Setting <i>M. Huang</i>
Ballroom J	Contaminated Sediment Remediation: Assessing and Measuring Remedy Effectiveness Marc Mills, Amy Mucha, David Walters 464 Trends in Pesticide and Flame Retardant in Sediment and Fish from the Pine River, MI Associated With the Velsicol Chemical Superfund Site <i>F. Dillon</i>	465 Measuring food web tissue contamination and DNA damage in response to remediation of PCB contaminated sediments in the Ottawa River Area of Concern <i>J. Lazorchak</i>	466 Evaluation of Native Benthic Invertebrate Community Response to In Situ Activated Carbon Sediment Remediation Treatment <i>M. Grover</i>	467 Bioaccumulation Monitoring and Modeling of PCBs after the first full-scale application of activated carbon to a 5-acre lake in Mirror Lake (Dover, DE) <i>E. Patmont</i>
Track	Aquatic Toxicology and Ecology	Integrated Env Assessment and Management	Environmental or Analytical Chemistry	Linking Science and Social Issues

Wednesday Morning Platform Presentations

10:00-10:15		10:20-10:35		10:40-10:55		11:00-11:15		250 AB
Munitions Compounds in the Environment: Release, Transport, Transformation, Exposure, Effects and Remediation Robert George, Guilherme Lotufo								
381 Tracing the cycling and fate of the explosive 2,4,6-trinitrotoluene in coastal marine systems with a stable isotopic tracer, ¹⁵ N - [TNT] R. Smith	382 Biotic uptake and incorporation of munitions derived nitrogen measured in three simulated coastal habitats M. Ballentine	383 Enhanced photo induced toxicity of Insensitive Munitions Mixtures A. Kennedy	384 Kinetic Uptake and Elimination of Insensitive Munitions in the earthworm, <i>Eisenia fetida</i> J. Coleman					250 DE
Sturgeon Ecotoxicology: Contaminant Risks to Endangered Populations Markus Hecker, Donald Tillitt, Jonathon Doering								
389 Can identities of key amino acids in the ligand binding domain of AhR be used to predict the sensitivity of endangered sturgeons to dioxins? J. Doering	390 Understanding how PCB toxins cause heart defects early in fish development C. Singelmann	391 Transcriptomic and Cell Process Pathways Altered by Laboratory Exposure of Shovelnose Sturgeon to Oil from the Deepwater Horizon Event C. Lavelle	392 DNA Fragmentation and Repair in Gulf Sturgeon (<i>Acipenser oxyrinchus desotoi</i>) Following the Deepwater Horizon Oil Spill J. Jenkins					250 AB
Recent Advances in Endocrine Disruptor Screening – Applications for Ecotoxicology Katherine Coady, Patience Browne								
397 The Use of Next-Generation Sequencing Techniques to Determine Biomarkers for Developmental Toxicity – A Case Study using Retinoic Acid M. Overturf	398 Ligand-Dependent Receptor Assembly as an Endpoint for the High-Throughput Screening of Chemicals for Endocrine Activity C. Holmes	399 Deciphering an Environmental-Endocrine Signaling Pathway for the Identification of Efficacious Screening Endpoints E. Medlock	Discussion					251 AB
Canadian Oil Sands: Advancing Science for an Expanding Industry – Part 1 Richard Frank, Jonathan Martin								
404 Characterizing and quantifying PAHs in the Athabasca oil sands region using compound-specific isotope analysis J. Ahad	405 Understanding Controls on Mercury and Methylmercury Deposition to the Oil Sands Region C. Willis	406 Estimation of vanadium guidelines for the protection of aquatic life relevant to the Canadian Oil Sands region S. Schiffer	407 Using natural variability to develop triggers for designing and adapting environmental monitoring programs K. Munkittrick					Ballroom AC
Systems Biology Approaches for Advancing Adverse Outcome Pathways for Risk Assessment Cheryl Murphy, Natalia Vinas								
412 Conceptualizing Adverse Outcome Pathways for Cyclooxygenase Inhibitors using Transcriptomic and Metabolomic Characterization D. Martinovic-Weigelt	413 Developing Molecular Guidelines for Chemicals with Reduced Oxidative Stress Potential through Systems Analysis of ToxCast F. Melnikov	414 Driving Risk Decisions Through Information Integration and Visualization Using Systems Biology, Ontologies and the AOPXplorer L. Burgoon	415 Consideration of Social Issues for Advancing Adverse Outcome Pathways for Risk Assessment K. Elliott					Ballroom B
Aquatic Toxicology and Ecology General – Part 1 Jim Oris								
420 Mechanisms of Tolerance to Chlorpyrifos in Resurrected <i>Daphnia pulicaria</i> Genotypes A. Simpson	421 A multi-assay evaluation of the sub-lethal effects of Chlorpyrifos on developing zebrafish (<i>Danio rerio</i>) T. Curran	422 Photocatalytic Degradation of Commercial Naphthenic Acids using Fixed-film TiO ₂ A. McQueen	423 Multiple stressors over multiple generations: assessing the combined risk of climate change and endocrine disruptors B. DeCourtene					Ballroom D
Alternatives Assessment – Current Technical Challenges in Implementation Alex Stone, Jay Tunkel, Timothy Malloy								
428 Methylene Chloride Paint Strippers: Lessons Learned from a California Consumer Products Regulation Alternatives Analysis Demonstration Project M. Jacobs	429 Results and lessons learned from the multi-disciplinary iNEMI alternative materials assessment project C. Robertson	430 Reverse engineering the PBT paradigm: Designing safer chemicals by applying the lessons learned from alternative assessment J. Tunkel	431 Advancing Alternatives Assessment for Safer Chemical Substitution: A Research & Practice Agenda J. Tickner					Ballroom E
Fate and Effects of Metals: Biogeochemical Perspective Richard Carbonaro, Kevin Rader								
436 Spatial Contaminant Patterns of Metals in a Great Lakes Area of Concern J. LaFontaine	437 Factors affecting arsenic mobilization from sediments collected from a prairie reservoir, Buffalo Pound Lake, Saskatchewan, Canada L. D'Silva	438 Release of Metals During Sediment Resuspension Events K. Farley	439 Development of linear free energy relationships for estimating metal binding to sulfur functional groups present in natural organic matter R. Carbonaro					Ballroom F
Using Population Models to Improve Ecological Risk Assessment: Balancing Complexity With Practicality Christopher Salice, Nathan Schumaker, Robert Pastorok								
444 Design and development of spatially-explicit IBMs and population models for risk assessment: A brief introduction to the HexSim N. Schumaker	445 Individual-based and matrix model approaches for estimating pesticide risk to an endangered songbird: model comparison along a continuum of complexity D. Dishman	446 Assessing risks of pesticides to listed species using population modeling: case study of an endangered plant A. Schmalke	447 How fisheries scientists use population models and what we can learn from their experience L. Barnthouse					Ballroom G
EDCs and Pharmaceuticals in the Environment Marc Mills, James Lazorchak, Kyle Fetter, Ruth Marfil-Vega								
452 Evaluating the movement of pharmaceuticals in soil, groundwater, and surface water at a municipal wastewater land application site A. McEachran	453 Rainfall-Induced Runoff of Anthropogenic Waste Indicators from Agricultural Test Plots Applied with Municipal Biosolids J. Gray	454 Screening of the levels of selected steroid hormones in water of some domestic and industrial sewerage channels in Cape Town environment O. Olatunji	455 Attenuation of pharmaceuticals along rivers: A major source of transformation products? Z. Li					Ballroom H
Pesticide Dose and Exposure: Effects on the Environment, Target and Non-Target Organisms Keith Solomon								
460 The art of arthropods: Crafting a new paradigm for listed terrestrial invertebrates in pesticide risk assessment C. Aubee	461 Glyphosate Hormesis: An Overview S. Duke	462 The time factor in dose response relationships – old ideas in new light J. Purdy	463 Application of a tiered approach to assess aquatic risks posed by pesticides in an intensive irrigation scheme V. Wepener					Ballroom I
Contaminated Sediment Remediation: Assessing and Measuring Remedy Effectiveness Marc Mills, Amy Mucha, David Walters								
468 Source apportionment of PCDD/Fs in the Passaic River R. Lohmann	469 The effect of sediment AC amendment on pelagic and benthic exposures to fish H. Fadaei Khoei	470 Analysis of bioremediation processes in oil contaminated shoreline sediments T. Størseth	471 Three-domain mass transfer model to predict the sorption kinetics and mobility of organic compounds in biochar amended soil S. Trinh					Ballroom J
Regulatory Directions		Remediation/Restoration		Special Symposia		Terrestrial or Wildlife Toxicology and Ecology		Track

Presentation will not be recorded.

Wednesday Afternoon Platform Presentations

	1:00-1:15	1:20-1:35	1:40-1:55	2:00-2:15
250 AB	Integrated Environmental Assessment and Management General - Part 2 Tim Canfield, Christopher McCarthy 472 What Kind of Risk Assessor Are You? <i>R. DeHate</i>	473 Effect of Breimont Attacke Pesticide on Soil Microbiota <i>C. Mgbemena</i>	474 Is Manure a RCRA Solid Waste? <i>W. Goodfellow</i>	475 Development and Use of Wild Game Consumption Rates in Human Health Risk Assessments <i>J. Conder</i>
250 DE	Integrating Environmental Health and LCA into Chemical Alternatives Assessment Jennifer Tanir, Lauren Heine 480 Recent Efforts to Advance the Understanding and Practice of Alternatives Assessments <i>E. Connor</i>	481 Towards a multi-attribute tool: Incorporating hazard and exposure metrics into life cycle analysis <i>A. Mason</i>	482 Intersection of Health and LCA: Utilizing Life Cycle Inventory Data <i>N. Santero</i>	483 Cross-pollinating life cycle assessment and chemical human exposure modeling to support decision making through improved sustainability analysis <i>S. Csiszar</i>
251 AB	Exploring the Intersection Between Ecosystem Ecology and Ecotoxicology: Recent Advances, Pitfalls and Recommendations Michelle Hornberger, Emma Rosi-Marshall 488 Defining ecosystem toxicology I: Contaminant and energy fluxes through food webs as an intersection between ecosystem science and ecotoxicology <i>D. Walters</i>	489 Defining Ecosystem Toxicology II: Ecosystem function as response variables to contaminants <i>E. Rosi-Marshall</i>	490 Context-dependent responses of stream ecosystems to contaminants and other anthropogenic stressors <i>W. Clements</i>	491 Role of functional processes in identifying effects of metal mining on stream macroinvertebrates <i>M. Hornberger</i>
Ballroom AC	Canadian Oil Sands: Advancing Science for an Expanding Industry - Part 2 Richard Frank, Jonathan Martin 496 Refined models to predict the acute toxicity of Oil Sands process affected waters to early-life stages of Fathead minnow (<i>Pimephales promelas</i>) <i>G. Morandi</i>	497 Aquatic Toxicity of acid extractable organics: modeling and alternative test methods <i>A. Redman</i>	498 Preparative fractionation of oil sands process-affected water for toxicological evaluations <i>A. Bauer</i>	499 A non-targeted chemical analysis strategy for identification of organic chemicals that cause acute toxicity of oil sands process-affected water <i>H. Peng</i>
Ballroom B	Fate, Toxicology or Risk Assessment of Materials of Interest to the Military Ron Checkai, Doris Anders, Mark Johnson, David Johnson 504 Environmental Available, Bioavailable, and Total Metal: What is Appropriate for Risk Assessments at Military Sites <i>J. Clausen</i>	505 Ecological Risk Assessment at a Canadian Force Base—Part 1: Problem Formulation <i>D. Johnson</i>	506 Short-Term Toxicity and Long-Term Developmental Effects of 3-Nitro-1,2,4-Triazol-5-One (NTO) to the Northern Leopard Frog (<i>Lithobates pipiens</i>) <i>D. Pillard</i>	507 Biological Response & Global Transcript-Expression Comparisons in <i>Rana pipiens</i> Tadpoles to Screen Conventional versus Inensitive Munitions <i>K. Gust</i>
Ballroom D	Aquatic Toxicology and Ecology General - Part 2 Marlo Sellin Jeffries 512 The Organizational Effects of PBDE-47 Exposure on Reproductive Function in Early Life Stage Fathead Minnows <i>L. Thornton</i>	513 The combined effects of metal contamination and sediment deposition on benthic invertebrate colonization at North Fork Clear Creek Superfund site, CO <i>B. Dabney</i>	514 Non-Lethal Detection of Intersex (Testicular Oocytes) in Black Basses (<i>Micropterus</i> spp.) using Laparoscopy <i>A. MacLeod</i>	515 Effects of the presence of plankton on the acute toxicity and morphological effects of crude oil to larval bay anchovy (<i>Anchoa mitchilli</i>) <i>S. Webb</i>
Ballroom E	Modeling Chemical Exposure - Part 1 Todd Gouin, Matthew MacLeod 520 Complex exposures and the role of exposure modeling in characterizing the eco-exposome" in the 21st Century <i>T. McKone</i>	521 Catalyzing Innovations in Modeling Chemical Exposures <i>J. Orme-Zavaleta</i>	522 An Integrated Approach to Assessing Exposure and Ecotoxicological Impacts in the State of Qatar <i>C. Warren</i>	523 Quantification of Dynamic Exposures of Aquatic Biota to Pollutant Releases Using an Integrated Process- and Activity-Based Model System <i>D. French-McCay</i>
Ballroom F	Fate and Effects of Metals: Regulatory and Risk Assessment Perspective Diana Eigner, Andrea Matzke 528 Beyond Standards: Challenges for Application of Biotic Ligand Model-based Water Quality Standards to Permits and Impaired Waters Designations <i>R. Gensemer</i>	529 Application of a fixed monitoring benchmark approach to evaluate compliance with water quality criteria: copper BLM as a case study <i>A. Ryan</i>	530 Adoption and implementation of biotic ligand-based water quality criteria <i>L. Guenzel</i>	531 Application of the Biotic Ligand Model & Fixed Monitoring Benchmarks for resolving water quality spatial variability in setting site-specific criteria <i>J. Gondek</i>
Ballroom G	Weight of Evidence Assessments and Potential Follow-up Testing to Elucidate Endocrine Disruption Ellen Mihaich, Lisa Ortego 536 Use of Relevant Information in Developing an Integrated Testing Strategy to Reduce Animal Use in the USEPA Endocrine Disruptor Screening Program <i>P. Bishop</i>	537 Using Predictive Information for Endocrine Prioritization and Screening: Example with a Triazole Fungicide <i>K. Paul</i>	538 The fidelity of adverse outcome pathways: a case study with Bisphenol A <i>G. Van Der Kraak</i>	539 Reflections on Biological Variability: An Analysis of Control Data from the US Endocrine Disruptor Screening Program List 1 Screening Battery <i>A. Schapau</i>
Ballroom H	Antidepressants and Perfluorochemicals: Divergent Chemistries, Convergent Environmental Persistence and Effects Edward Furlong, Christopher Higgins, Heiko Schoenfuss 543 Opening Pandora's Box on Per- and Polyfluoroalkyl Substances (PFASs) in Groundwater: The Legacy of Dr. Melissa Schultz <i>J. Field</i>	544 Fluorochemicals in wastewater: the long-term impacts of a simple mass balance study <i>C. Higgins</i>	545 Partitioning of benzodiazepines in soils and its influence on uptake in food crops <i>M. Williams</i>	546 Uptake and Disposition of Pharmaceuticals by Bluegill Exposed at Constant Concentrations in a Flow-Through Aquatic Exposure System <i>E. Furlong</i>
Ballroom I	Soil Contaminants: Fate, Bioavailability, Ecotoxicology and Risk Assessment Michael Simini, Ming Fan, Theresa Phillips 551 A Screening Level Ecological Risk Assessment Framework for Urban Soils <i>K. Kellock</i>	552 Sensitivity of soil microorganisms to Ag2S and Ag nanoparticles: a new method to quantify sensitivity using molecular-based techniques <i>C. Doolette</i>	553 Effects of aging and soil properties on the bioavailability and toxicity of vanadium to soil invertebrates <i>R. Lanno</i>	554 Predicting Mammalian Polycyclic Aromatic Hydrocarbon Bioavailability from Historically Contaminated Soil <i>K. James</i>
Ballroom J	Advanced Analytical Methods for Contaminant Discovery Eunha Hoh, Nathan Dodder, June-Soo Park 559 Identification and Characterization of Glucocorticoid Agonists in the Aquatic Environment <i>S. Snyder</i>	560 Tracking Organic Transformation Products during Chlorination in Wastewater Treatment <i>M. Bedner</i>	561 Non-targeted Analysis of Samples from the Oil Sands Area of Alberta, Canada <i>C. Manzano</i>	562 Non-Targeted Analysis of Petroleum Metabolites in Groundwater at Historic Fuel Release Sites by GCxGC-TOFMS <i>R. Mohler</i>
Track	Aquatic Toxicology and Ecology	Integrated Env Assessment and Management	Environmental or Analytical Chemistry	Linking Science and Social Issues

Wednesday Afternoon Platform Presentations

3:00-3:15		3:20-3:35		3:40-3:55		4:00-4:15			
Integrated Environmental Assessment and Management General - Part 2 Tim Canfield, Christopher McCarthy									
476 Methodological guidance in evaluating environmental and economic aspects of wood products: A combined and simplified approach <i>H. Davidson</i>		477 Evaluation of Mercury and PCB Trends in San Francisco Bay Region Stormwater <i>D. Yee</i>		478 The potential impact of deposition from static rocket motor testing on crops <i>W. Doucette</i>		479 The Application and Misapplication of Directed Acyclic Graphs for Causal Inference in Ecology <i>R. Kashuba</i>			
Integrating Environmental Health and LCA into Chemical Alternatives Assessment Jennifer Tanir, Lauren Heine									
484 Route- and Form-specific Hazard Assessment Using GreenScreen® for Safer Chemicals: A Case Study of Titanium Dioxide, Carbon Black and Silica <i>B. Wang</i>		485 Performance and hazard assessment of alternative fluorinated and non-fluorinated DWR (Durable Water Repellent) technologies <i>I. Cousins</i>		486 Incorporating Life Cycle Thinking into Alternatives Analysis <i>K. Magnuson</i>		487 Consistently Integrating Life-Cycle Impact Metrics into Chemical Alternatives Assessment <i>P. Fantke</i>			
Exploring the Intersection Between Ecosystem Ecology and Ecotoxicology: Recent Advances, Pitfalls and Recommendations Michelle Hornberger, Emma Rosi-Marshall									
492 Cross-ecosystem toxicology: How aqueous contaminants manifest effects in terrestrial ecosystems <i>T. Schmidt</i>		493 Biofilm response to metal-contaminated sediments – the importance of ecosystem context for managing polluted ecosystems <i>A. Harrison</i>		494 Using community ecotoxicology to assess effects of micropollutants from wastewater effluents <i>A. Tlili</i>		495 Nanomaterial impacts in the real world: Ecological Context and Ecological Impacts of Nanomaterials <i>E. Bernhardt</i>			
Canadian Oil Sands: Advancing Science for an Expanding Industry – Part 2 Richard Frank, Jonathan Martin									
500 Long term effects in fathead minnow exposed to oil sands sediments early in life <i>J. Parrott</i>		501 Effects of Oil Sands Reclaimed Wetlands on Native Amphibians <i>J. Klemish</i>		502 Diluted bitumen causes deformities and molecular responses indicative of oxidative stress in Japanese medaka embryos <i>B. Madison</i>		503 Naphthenic acid mixtures accelerate differentiation of mouse embryonic stem cells and promotes cardiac development <i>G. Van Der Kraak</i>			
C									
Fate, Toxicology or Risk Assessment of Materials of Interest to the Military Ron Checkai, Doris Anders, Mark Johnson, David Johnson									
508 Coupling biotransformation of 2,4-dinitroanisole (DNAN) in anaerobic soil solutions to a multidimensional toxicity assay using zebrafish embryos <i>C. Olivares</i>		509 Environmental Fate, Transport, and Toxicity Considerations in Fielding Inensitive Munitions: Lessons Learned <i>M. Johnson</i>		510 Derivation of Clean-up Values Protective of Soil Ecological Receptors for Nitrogen-Based Energetic Soil Contaminants <i>R. Kuperman</i>		511 PFOS and PFOA: Ecological Risk Assessment Methods, Findings and Decisions <i>U. Vedagiri</i>			
O									
Aquatic Toxicology and Ecology General – Part 2 Marlo Sellin Jeffries									
Discussion		517 Suspended Sediment Effects on Smallmouth Bass (<i>Micropterus dolomieu</i>) <i>B. Suedel</i>		518 Review of the Environmental Fate and Effects of Drill Cuttings and Associated Drilling Fluids Discharged from Offshore Oil and Gas Operations <i>D. Sanzone</i>		519 Occurrence and toxicity of current-use pesticides in sediment in agricultural waterways: a case study in Fujian, South China <i>Y. Wei</i>			
E									
Modeling Chemical Exposure – Part 1 Todd Gouin, Matthew MacLeod									
524 A Proposed Model for the Interpretation of Exposure Data from the New OECD305 Bioaccumulation Test Guideline <i>F. Gobas</i>		525 Estimating the effect of Arctic Canadian dietary transitions on human exposure to persistent organic pollutants <i>M. Binnington</i>		526 Uncertainty and variability in the atmospheric formation of long-chain PFCAs <i>C. Thackray</i>		527 Cyclic Volatile Siloxanes: A Potential Source of Silicon Nanoparticles? Seasonal Study of North American Cyclic Volatile Siloxanes <i>N. Janecek</i>			
R									
Fate and Effects of Metals: Regulatory and Risk Assessment Perspective Diana Eigner, Andrea Matzke									
532 Tales from the Trenches: Lessons Learned with the Fixed Monitoring Benchmark <i>C. Claytor</i>		533 Using the Fixed Monitoring Benchmark Approach to Derive BLM-Based Freshwater Copper Criteria <i>S. Tobiason</i>		534 The Use of Multi-Linear Regression to Derive Site-Specific Water Quality Criteria for Metals: A Complementary Approach to the Biotic Ligand Model <i>K. Brix</i>		535 Anatomy of a giant: constructing and deconstructing ten years of sublethal toxicity data from metal mines in Canada <i>L. Van der Vliet</i>			
E									
Weight of Evidence Assessments and Potential Follow-up Testing to Elucidate Endocrine Disruption Ellen Mihai, Lisa Ortego									
540 Identifying Endocrine Disruptors: The complexities of distinguishing endocrine activity from systemic toxicity <i>K. Coady</i>		541 How Potency Determinations Can Clarify Tier 1 and Streamline Tier 2 <i>C. Borgert</i>		542 Make Sure the Pieces Fit: An Evaluation of the Estrogen Pathway Response for Triclosan <i>E. Mihai</i>		Discussion			
K									
Antidepressants and Perfluorochemicals: Divergent Chemistries, Convergent Environmental Persistence and Effects Edward Furlong, Christopher Higgins, Heiko Schoenfuss									
547 The effects of an SSRI antidepressant mixture on hybrid striped bass brain chemistry and predatory behavior <i>L. Sweet</i>		548 Antidepressant pharmaceuticals and their metabolites affect growth and larval behavior in fathead minnows across generations <i>H. Schoenfuss</i>		549 Spatial and Temporal Occurrence of Estrogenic Activity in Urban Effluent-Dominated Systems <i>N. Cipolletti</i>		550 Monitor & Mentor: Environmental Chemistry at The College of Wooster and the Legacy of Melissa Schultz <i>P. Edmiston</i>			
Soil Contaminants: Fate, Bioavailability, Ecotoxicology and Risk Assessment Michael Simini, Ming Fan, Theresa Phillips									
555 Diastereoisomer-Specific Translocation of HBCD in <i>N. benthamiana</i> cultured on Humic Acid (HA) amended Soil <i>M. Son</i>		556 Advanced methods for modeling toxicity of metal mixtures to plants <i>Y. Le</i>		557 Implementation of bioavailability for ecological risk assessment of lead in European soils <i>M. Chowdhury</i>		558 The Biogeochemistry of Indium, Gallium, and Germanium in Mine Wastes <i>S. White</i>			
Advanced Analytical Methods for Contaminant Discovery Eunha Hoh, Nathan Dodder, June-Soo Park									
563 Exploring human exposure to organic micropollutants in the indoor environment by non-targeted LC-HRMS analysis <i>L. Ferguson</i>		564 SRM 2585 Organic Contaminants in House Dust as a material for evaluating non-targeted screening tools <i>B. Place</i>		565 Workflow and Proof of Concept for Non-Targeted Analysis of Environmental Samples by LC-MS/MS <i>C. Rosal</i>		566 Discovering Emerging Chemicals in Lake Trout: Data Reduction and Optimizing HRMS Data <i>B. Crimmins</i>			
Regulatory Directions		Remediation/Restoration		Special Symposia		Terrestrial or Wildlife Toxicology and Ecology			
Track	Ballroom J	Ballroom I	Ballroom H	Ballroom G	Ballroom F	Ballroom E	Ballroom D	Ballroom C	Ballroom B

Wednesday Poster Presentations

Schedule

Setup 7:00 a.m.–8:00 a.m.

Take Down 6:30 p.m.–6:45 p.m.

Presenters are expected to attend their poster during all break periods and evening poster social to discuss their work with scientists visiting their poster.

Coffee Breaks 9:15 a.m.–10:00 a.m. and 2:15 p.m.–3:00 p.m.

Lunch Break 11:15 a.m.–1:00 p.m.

Poster Social 5:00 p.m.–6:30 p.m.

Fate, Toxicology or Risk Assessment of Materials of Interest to the Military

Ron Checkai, Doris Anders, Mark Johnson, David Johnson

WP001 Characterization of Organophosphorus Nerve Agent VX Droplets on Plant Foliage | *M. Simini*

WP002 Environmental Progress: The Effective Half-Life of the Chemical Warfare Agent VX on Plant Foliage | *R. Checkai*

WP003 Weathering and photodegradation effects on fate and transport properties for alternative fuels of interest to DoD | *R. George*

Assessing Ecological Risks of Resource Extraction on Inland Environments: Oil and Gas Extraction and Coal Mining

| James Lazorchak, Sarah Hughes, David Soucek, Christopher Nietch, Bryan Brooks, Ben Kefford

WP004 Mesocosm community response sensitivities to specific conductivity comprised of different major ions | *C. Nietch*

WP005 Acute toxicity of bicarbonate from unconventional gas produced waters in eastern Australia | *B. Kefford*

WP006 The Utica Shale Energy Environmental Laboratory (USEEL): An academia-industry-government partnership at Ohio State University | *R. Lanno*

WP007 The Complexity and Challenges on Assessment of Toxicity of Hydraulic Fracturing Flowback Fluids | *Y. He*

WP008 Induction of EROD activity and oxidative stress in gill of Rainbow Trout (*Oncorhynchus mykiss*) exposed to Hydraulic Fracturing Flowback Fluid | *E. Folkerts*

WP009 The Application of a Weight-of-Evidence Aquatic Impact Assessment of a Coal Spill into a Freshwater Urban System | *G. Gilron*

Munitions Compounds in the Environment: Release, Transport, Transformation, Exposure, Effects and Remediation

Robert George, Guilherme Lotufo

WP010 A Practical Approach to Integrating Risk Assessment and Remediation at a former Munitions Manufacturing Facility - Using Results to Get Results | *S. Larew*

WP011 Assessing the prevalence of non-additive toxicity among the chemical constituents of the insensitive munition formulation IMX-101 | *K. Gust*

WP012 Bioaccumulation of the high energetic and insensitive munitions compound 2,4-dinitroanisole in the earthworm *Eisenia fetida* from spiked soils | *G. Lotufo*

WP013 Investigation of polar organic chemical integrative sampler (POCIS) flow velocity dependence for munitions constituents in underwater environments | *R. George*

WP014 Optimization of Integrative Passive Sampling Approaches for Munitions Constituents | *J. Belden*

WP015 Phytoscreening for Energetic Contaminants: Perchlorate, RDX and HMX | *J. Burken*

WP016 Potential risks and impact assessment of chemical warfare agents to human health and the environment at a deep-water discarded military munitions site | *C. Briggs*

WP017 Shallow-water conventional munitions sites: A demonstrated approach for sampling and risk analysis | *S. Shjegstad*

WP018 Tracking the metabolism of explosives in coastal marine ecosystems using stable isotopic tracers: Role of sediment | *T. Ariyaratna*

WP019 Ultrasonic interrogation of underwater military munitions in marine environments | *R. George*

Soil Contaminants: Fate, Bioavailability, Ecotoxicology and Risk Assessment

Michael Simini, Ming Fan, Theresa Phillips

WP020 A Comparison of Total Suspended Solids Analytical Methodology | *M. Moland*

WP021 Application of the weight of evidence (WOE) evaluation in a complex terrestrial ecological risk assessment | *S. Thakali*

WP022 Arsenic Bioaccumulation in *Brassica juncea*: An Examination of Arsenic Availability and Toxicity in Soil with the Presence of Iron Oxyhydroxides | *B. Maki*

WP023 Assessment of the Impacts of Bio-based Mineral fertilizers and substitute for Fossil-based synthetic fertilizers | *B. Ojong*

WP024 Bioavailability and Bound-residue Formation of Perfluoroalkyl Substances in Soils | *L. Zhao*

WP025 Ecotoxicity monitoring of plant-based biodiesel contaminated soil using the earthworm (*Eisenia fetida*) | *I. Bamgbose*

WP026 Effect of Soil properties and fractionation of arsenic in soil on the bioavailability and toxicity of *Paronychius kimi* (Collembola) | *Y. Lee*

WP027 Evaluating terrestrial toxicity of hydrophobic contaminants using plant and soil invertebrates | *J. Butler*

WP028 Field validation of a laboratory pilot demonstrating the ability of biochar to reduce mercury bioavailability in floodplain soils | *B. Reese*

WP029 Human health and ecological impacts from pipeline valve staining: Risk assessment coupled with research | *K. Bresee*

WP030 Use of earthworms to identify atmospheric depots in soils of airborne metals in Toluca Valley | *J. Sánchez-Meza*

Epigenetics for Environmental Toxicology

Ping Gong

WP031 Environmental stressor-induced transgenerational epigenetic imprinting underlying sexual reproduction in *Daphnia pulex* | *P. Gong*

WP032 Early-life stage exposure to triclosan in zebrafish affects genome-wide methylation at base-resolution | *E. Falisse*

WP033 Acute cardiac effects of sublethal injection of benzo-a-pyrene and 5-azacytidine in juvenile rainbow trout (*Oncorhynchus mykiss*) | *F. Leal*

WP034 The self-fertilizing mangrove rivulus, *Kryptolebias marmoratus*: a new model vertebrate species in ecological epigenetics and aquatic ecotoxicology | *F. Silvestre*

Antibiotics in Agricultural Ecosystems: Fate, Treatment, Analysis and Ecological Effects

| Diana Aga, Joshua Wallace

WP035 Fate of antimicrobials and antimicrobial resistance genes after land application of swine manure slurry | *S. Bartelt-Hunt*

Antidepressants and Perfluorochemicals: Divergent Chemistries, Convergent Environmental Persistence and Effects

| Edward Furlong, Christopher Higgins, Heiko Schoenfuss

WP036 Quantitation of Per- and Polyfluoroalkyl Substances on Consumer Products by LC-MS/MS, Total Oxidizable Precursor Assay & Confirmation by Total Fluorine | *A. Robel*

WP037 From Chemistry to the Environment - A Prospective Analysis of the Research into Environmental Hazards of and Exposure to PFASs in the Next Decade | *Z. Wang*

WP038 Locomotion, anxiety, and feeding behavior changes as a result of PFOS, PFNA and PFOA exposure to embryonic zebrafish (*Danio rerio*) | *C. Greenfield*

WP039 The role of oatp transporters in the uptake of perfluorinated compounds into embryonic zebrafish (*Danio rerio*) | *K. Annunziato*

WP040 Chronic exposure to fluoxetine (Prozac) and norfluoxetine affects the development of *Chironomus riparius* | *R. Webb*

WP041 Age matters: Developmental stage influences behavioral response thresholds of *Danio rerio* larvae exposed to diphenhydramine or diazinon | *L. Kristofco*

Biodegradation and Environmental Fate of Chemicals - Regulatory Acceptance of Non-Standard Tests

| Chris Mead

WP042 Improving biodegradation of low solubility chemicals: What can we do? | *C. Mead*

WP043 Investigation into the biodegradability of various hydrocarbon solvents | *D. Lyon*

WP044 Proposed Modifications to the OECD 306 Seawater Biodegradation Screening Test | *T. Martin*

WP045 Putting the bio" back into biodegradation: The Proposed Use of High Throughput Screening Methods in Chemical Biodegradation Assessment" | *T. Martin*

WP046 Simulation studies to evaluate surfactant biodegradation rates and their degradation pathways in sewer systems: Application of the OECD 314A | *J. Menzies*

WP047 Impact of sediment particle size on biotransformation of 17 β -estradiol and 17 β -trenbolone | *Y. Zhang*

WP048 Measurement of hydroxyl radical rate constant for sulfur-containing polycyclic aromatic hydrocarbons | *P. Saranampour*

Exploring the Intersection Between Ecosystem Ecology and Ecotoxicology: Recent Advances, Pitfalls and Recommendations

| Michelle Hornberger, Emma Rosi-Marshall

WP049 Reassessing Duration and Frequency Components of Aquatic Life Criteria | *M. Elias*

WP050 Environmental changes in the Baltic Sea affects fish health | *N. Hanson*

WP051 Freshwater mussels alter mercury contamination of aquatic consumers | *B. Tweedy*

WP052 Species Sensitivity Distributions (SSDs) for aquatic insects and metals inferred from recovery trajectories versus traditional laboratory approaches | *C. Mebane*

Track

Aquatic Toxicology and Ecology

Integrated Env Assessment and Management

Environmental or Analytical Chemistry

Linking Science and Social Issues

Wednesday Poster Presentations

Contaminated Sediment Remediation: Assessing and Measuring Remedy Effectiveness | Marc Mills, Amy Mucha, David Walters

WP053 Models for Remediation Effects in a Mercury Contaminated River | *J. Green*
WP054 Criteria for the Selection of Bank Management Areas as Part of the Mercury Remedy in a Complex River System | *J. Collins*
WP055 Establishing baseline data for short- and long-term monitoring to evaluate remedy effectiveness for a mercury contaminated sediment system | *J. Collins*
WP056 A review of amendments to reduce mercury availability in sediment | *K. Bechard*
WP057 Predicted effectiveness of activated carbon treatment for field sediment sites with variable site characteristics | *Y. Choi*
WP058 NCCOS Great Lakes Mussel Watch: Contamination Monitoring and Assessment for Restoration of the Great Lakes | *E. Johnson*

Evolutionary and Multi-Generational Considerations in Ecotoxicology and Chemicals Risk Assessment | Karel A.C. De Schampelaere, Bryan Clark, Joe Shaw, Helen Poynton

WP059 Acclimation and adaptation by multi-generational exposure to common marine pollutants in the marine copepod *Tigriopus californicus* | *P. Sun*
WP060 Accumulation, elimination, sequestration, and genetic variation of lead (Pb2+) loads within and between generations of *Drosophila melanogaster* | *E. Peterson*
WP061 Detailing the evolved resistance to PCBs and PAHs in Gulf killifish (*Fundulus grandis*) from Galveston Bay, Texas, USA | *E. Oziolor*
WP062 Effects of Multigenerational Exposure to Climate Change and Contaminants in *Daphnia magna* | *D. Kimberly*
WP063 Extent and evolutionary implications of insecticide resistance in a non-target amphipod, *Hyalella azteca* | *K. Major*
WP064 Genetic Variation Plays Important Role in Cadmium Stress Response: A QTL Mapping Approach in a *Daphnia* Controlled Cross | *S. Roy*
WP065 Quantifying evolutionary outcomes and their potential for risk assessment | *J. Shaw*

Pesticide Dose and Exposure: Effects on the Environment, Target and Non-Target Organisms | Keith Solomon

WP066 Passerine Dietary (LC50) Test: Challenges and Utility in Deriving an Acute Endpoint for Pesticide Registration in the U.S. | *M. Feken*
WP067 Effects of Environmentally-Relevant Mixtures of Four Common Organophosphorus Insecticides on the Honey Bee (*Apis mellifera* L.) | *Y. Alnagar*
WP068 Effects of a glyphosate end-use product on the flower phenology of black-eyed Susan (*Rudbeckia hirta*) and red clover (*Trifolium pratense*) | *S. Rodney*
WP069 Comparative Genotoxic analysis of non-target organism (*Archachatina marginata*) exposed to Paraquat and Glyphosate pesticides | *A. Udebuani*
WP070 Effects of glyphosate on interactions between Collembola and soil microorganisms | *J. Wee*
WP071 Neonicotinoid Insecticides: Assessing the Cumulative Toxicity of Mixtures on *Chironomus dilutus*, a Sensitive Aquatic Insect Species | *E. Maloney*
WP072 Effect of dietary exposure to field-realistic concentrations of imidacloprid on activity, metabolism, and cold tolerance of *Bombus impatiens* | *A. Krueger*
WP073 Chronic, comparative toxicity of imidacloprid, clothianidin, and thiamethoxam to aquatic macroinvertebrates in a laboratory and field setting | *M. Cavallaro*
WP074 Dermal Uptake of Organic Contaminants by Amphibians Based on Location of Exposure and Hydrophobicity of Contaminant | *W. Mimbs*
WP075 A Probabilistic Pesticide Risk Assessment Model for Predators of Vertebrates | *S. Rodney*
WP076 Estimating Risks to Aquatic Macroinvertebrate Communities after Exposure to Bifenthrin Contaminated Sediments | *H. Rogers*
WP077 Assessment of insecticide impacts on vineyards by using Environmental Impact Quotient (EIQ) Model | *S. Mermer*
WP078 The Impact of Underlying Assumptions on Avian and Mammalian Pesticide Risk Assessments | *C. Habig*
WP079 Developmental Neurotoxic Effects of Chlорpyrifos as observed through *C. elegans* Behavior | *K. Adams*
WP080 Considerations on practical methods to refine the risk assessment of pesticides on pollinators | *S. Knaebe*

Advanced Nanomaterials Analysis for Nanotoxicology Studies

James Ranville, Sohely Tadjiki

WP081 A metal fingerprinting approach to quantify single-walled carbon nanotube (SWCNT) in airborne particulate matter and marine sediment | *L. Ferguson*
WP082 Toxicity, intracellular accumulation and transport of uncoated and fluorescently conjugated TiO₂-NPs in the intestinal fish cell line, RTgutGC | *M. Minghetti*
WP083 Using single particle ICP-MS as a tool for understanding metal-nanoparticles transformation during nanotoxicity assays | *M. Johnson*
WP084 Detecting Single-walled Carbon Nanotube uptake by *Daphnia magna* Using Single Particle ICP-MS | *J. Wang*

WP085 Transformation kinetics of metallic nanoparticles in environmental and cell culture exposure media measured by SP-ICP-MS | *R. Merrifield*

WP086 Evaluation of methods to quantify dissolution of metal nanomaterials | *N. Hartmann*

Modeling Chemical Exposure

Todd Gouin, Matthew MacLeod

WP088 The SETAC Exposure Modeling Advisory Group: Past, present, and the future (reinforcing the role of exposure science within SETAC) | *T. Gouin*

WP089 Applying and evaluating the RAIDAR model to address data gaps for chemical exposure assessment: A case study for dechlorane plus | *A. Falls*

WP090 Introducing BIONIC v2: A mechanistic mass balance model for predicting bioconcentration factors (BCFs) of ionizable organic chemicals in fish | *J. Armitage*

WP091 Simulating the impact of Aboriginal Arctic traditional food substitution on nutrient and persistent organic pollutant intakes | *M. Binnington*

WP093 Unifying data from chemistry, biology, and health fields of science within a single framework to improve human PBTK modeling | *T. Brown*

WP094 Environmental fate and exposure modeling of home and personal care products in Asia: Ecohope | *C. Wannaz*

WP095 Assessing the impact of adult physiological variability on the magnitude of chemical-chemical metabolic interactions | *M. Bteich*

WP096 Modeling the Fate and Transport of Contaminants for Sediment Assessment and In-situ Remedial Design by using two novel tools CapSim and CapAn | *X. Shen*

WP097 Predicted phototoxicities of carbon nano-material by quantum mechanical calculations | *D. Betowski*

WP098 Development of *Helisoma Trivolvis* pond snails as biological passive samplers for the biomonitoring of current-use pesticides | *S. Morrison*

WP099 Evaluation of dietary exposure using stable isotope measurements and dietary contribution analysis in the berry's creek study area (New Jersey, USA) | *K. Whitehead*

WP100 Can we "see" signals of anthropogenic mercury emissions in the Great Lakes region? Effect of variability in emissions from coal combustion | *A. Giang*

Systems Biology Approaches for Advancing Adverse Outcome Pathways for Risk Assessment | Cheryl Murphy, Natalia Vinas

WP101 Systems Biology Approaches for Advancing Adverse Outcome Pathways for Risk Assessment | *N. Vinas*

WP102 Weight of Evidence Evaluation of Adverse Outcome Pathways Converging at Impaired Vitellogenin Synthesis Leading to Reproductive Impairment | *K. Jensen*

WP103 Exploring a Local Quantitative Structure-Activity Relationship (QSAR) Model developed from Mode-of-Action Data in an Adverse Outcome Pathway (AOP) | *M. Kawa*

WP104 Development of Quantitative Adverse Outcome Pathways for Ecological Risk Assessment | *K. Watanabe*

Sturgeon Ecotoxicology: Contaminant Risks to Endangered Populations

Markus Hecker, Donald Tillitt, Jonathon Doering

WP105 Characterization of metallothionein in two ancient fishes exposed to metals: white sturgeon and lake sturgeon | *S. Beitel*

WP106 Effects of chronic dietary exposure to selenomethionine on the transcriptome of juvenile white sturgeon (*Acipenser transmontanus*) | *S. Patterson*

WP107 Relative potencies and relative sensitivities of dibenz-p-dioxins, dibenzofurans, and polychlorinated biphenyls in white sturgeon and lake sturgeon | *B. Eisner*

WP108 Temporal Trends of PCBs, PBDEs, and Perfluorinated Compounds in Chinese Sturgeon (*Acipenser sinensis*) Eggs (1984-2008) | *J. Sun*

Lab Data, Hazard, Risk and Regulation of Endocrine Active Chemicals - So What? The Big Picture from Little Pieces | Nancy Shappell, Tim Verslycke, Spencer Williams

WP109 Challenges in ecotoxicology - what does controlled and standardized results mean in a complex and dynamic environment? | *T. Brodin*

WP110 Estrogenic compounds, chemical quantitation, biological assessment - What we know, what we don't, and what should our future priorities be? | *N. Shappell*

WP111 Evidence for thresholds associated with the weak estrogenic activity of 4-nonylphenol and 4-t-octylphenol | *K. Coady*

WP112 Examining the disconnect between laboratory studies of endocrine active compounds and perceived ecological consequences | *H. Schoenfuss*

WP114 Social hierarchy modulates endpoint expression in single-sex fish exposures to estrogens | *J. Ivanova*

Advanced Analytical Methods for Contaminant Discovery | Eunha Hoh, Nathan Dodder, June-Soo Park

WP115 Monitoring of 1300 organic micro-pollutants in surface waters from Tianjin and Jinan, Northern China | *L. Kong*

Regulatory Directions

Remediation/Restoration

Special Symposia

Terrestrial or Wildlife Toxicology and Ecology

Track

Wednesday Poster Presentations

WP116 Development of a multiresidue UPLC-MS/MS method for the analysis of 10 pesticides in water | *V. Toteu Djomte*
WP117 Biomonitoring of organic contaminants in marine mammals by GCxGC/TOF-MS | *N. Dodder*
WP118 Halogenated Carbazoles in Lake Trout from the Great Lakes of North America | *Y. Wu*
WP119 Non-target analysis by GC x GC-HRTOFMS and its application to emission source analysis of the detected contaminants using GIS | *Y. Zushi*
WP120 Fast screening of atmospheric particulate matter (PM) concentrations | *H. Hwang*

Fate and Effects of Metals: Regulatory and Risk Assessment Perspective

Diana Eigner, Andrea Matzke

WP121 A new approach to the hazard classification of massive-form metals | *P. Huntsman-Mapila*
WP122 Application of the Biotic Ligand Model for setting site-specific copper standards for Big Thompson River, CO | *J. Gondek*
WP123 Assessment of Amphibian Risks in Wetlands Containing Elevated Metal Concentrations | *R. Hull*
WP124 Development of a Draft National 304(a) Mercury Ambient Water Quality Criteria for the Protection of Aquatic Life and Aquatic-Dependent Wildlife | *A. Jarvis*
WP125 Draft Reassessment of the 1988 Ambient Water Quality Criteria for Aluminum | *D. Eigner*
WP126 Effects of seawater introduction on trace element levels in aquatic ecosystem of Lake Koyama-ike, Japan | *M. Hosoda*
WP127 Fluctuating water levels in coastal wetlands: The role of hydroperiod on release and capture of bioavailable metals | *S. Nedrich*
WP128 Revising USEPA's National Cadmium Ambient Water Quality Criteria for the Protection of Freshwater and Estuarine/Marine Aquatic Life | *M. Elias*
WP129 Risk Assessment of Agricultural farmland: A case study of Wukari, Taraba State Nigeria | *O. Otituju*
WP130 Risk Assessment of Mercury Contamination To Human Health in The Vicinity of Small-Scale Gold Mining Activities | *K. Oginawati*
WP131 The Biotic Ligand Model as a Predictor of Acute Copper and Zinc Toxicity to Ceriodaphnia dubia in a Blackwater Receiving Stream in South Carolina | *S. Harmon*

Defining the Role of Chemical Activity in Environmental Risk Assessment

Todd Gouin, James Armitage

WP132 Why is chemical activity successful as a metric of aquatic toxicity? A gedankenexperiment explains why | *J. Armitage*
WP133 Challenges and potential limitations to the application of the chemical activity concept for environmental risk assessment | *T. Gouin*
WP134 Defining the relationship between chemical activity and specific modes of action | *J. Hermens*
WP135 Linking algal growth inhibition to chemical activity | *S. Schmidt*
WP136 Addressing uncertainty in sub-cooled liquid property estimation: Applications for chemical activity calculations | *T. Brown*
WP137 Estimating chemical solubility and its uncertainty for toxicology and environmental risk assessment using Bayesian method | *T. Gouin*
WP138 Applying the RAIDAR model and the chemical activity approach for ecological risk assessment: A case study for select organic flame retardants | *J. Arnot*
WP139 Sorptive capacities of lipids determined by passive dosing of non-polar organic chemicals | *A. Jahnke*

EDCs and Pharmaceuticals in the Environment

Marc Mills, James Lazorchak, Kyle Fetter, Ruth Marfil-Vega

WP140 Faster greener techniques for analysis of common pharmaceuticals in wastewater | *C. Bottaro*
WP141 Estrogens in estuarine water: analytical validation and first data for a highly populated coastal Brazilian region | *R. Gonçalves*
WP142 Occurrence of Wastewater Contaminants at Norway House Cree Nation, Manitoba, Canada | *K. Luong*
WP143 EDC activity in hospital, WWTP effluent, and river waters from the Brussels region, Belgium | *K. Van Langenhove*
WP144 Bio-chemical evaluation of endocrine and hormone disrupting activities in river waters from Vietnam and India | *T. Nguyen*
WP145 Screening treated wastewater for pharmaceutical emerging contaminants under high temperature and saline conditions | *D. Nabi*
WP146 Plants cell cultures: A Tool for Screening Plant Metabolic Potential of Contaminants of Emerging Concern (CECS) | *S. Dudley*
WP147 Uptake of endocrine disrupting organic pollutants from sewage sludge by earthworms *Dendrobaena veneta* | *I. Havranek*
WP148 Dissolved Organic Matter Mediated Photolysis of 17 α -Ethyneestradiol | *M. Freiberger*

Recent Advances in Endocrine Disruptor Screening – Applications for Ecotoxicology

Katherine Coady, Patience Browne

WP149 The endocrine-disrupting potentials of equine metabolites in the medaka using *in silico* and *in vivo* assays | *K. Arizona*

WP150 Investigations of endocrine disruption using *Gambusia* species | *M. Gagnon*

Regional Marine Monitoring Programs around the US

WP151 The Regional Monitoring Program for Water Quality in San Francisco Bay, California, USA: Science in Support of Managing Water Quality | *P. Trowbridge*

WP152 The San Diego Regional Harbor Monitoring Program in Southern California, USA | *C. Stransky*

Canadian Oil Sands: Advancing Science for an Expanding Industry

Richard Frank, Jonathan Martin

WP153 Recent Trends in Ambient Air VOC and RSC Concentrations in the Athabasca Oil Sands Region | *K. Percy*

WP154 Toxicity Mapping using Passive Air Sampling for Polycyclic Aromatic Compounds | *N. Jariyasopit*

WP155 Polycyclic Aromatic Compounds in Tributaries of the Athabasca River in the Oil Sands Region of Alberta, Canada | *C. Manzano*

WP156 Oil sands influences on PAC concentrations, composition and diagnostic ratios in sediments in the oil sands monitoring area and western Lake Athabasca | *M. Evans*

WP157 Lead isotopes as a potential fingerprinting tool in the Athabasca Oil Sands Region | *P. Gammon*

WP158 Gene expression of drug metabolizing enzymes and ABC transporters in larvae of Japanese medaka exposed to acidic basic and neutral fractions of OSPW | *H. Alharbi*

WP159 Preparative fractionation of bitumen-influenced groundwaters from the Athabasca oil sands region for toxicological evaluations | *R. Frank*

WP160 Toxicity of naphthenic acid fraction components extracted from oil sands process-affected waters to fathead minnow and walleye early-life stages | *J. Parrott*

WP161 Olfactory and behavioural responses in fish exposed to natural and anthropogenic oil sands related toxicants in the lower Athabasca River basin | *S. Chow*

WP162 Determining the effect of oil sands process-affected water on grazing behaviour of *Daphnia magna* | *E. Lari*

WP163 Toxicogenomic effects of diluted bitumen on developing fathead minnow (*Pimephales promelas*) | *F. Alsaadi*

WP164 A comparison of conventional crude oil and dilbit developmental toxicity to zebrafish | *D. Philibert*

WP165 A mechanistic investigation of the influence of water chemistry on vanadium toxicity to *Daphnia* sp. | *E. Gillio Meina*

WP166 Assessing the toxicity of natural Oil Sands area sediments using juvenile freshwater mussels | *P. Gillis*

WP167 Assessing sediments for "lake making" by determining the pore water concentration and potential bio-available fraction of organic contaminants | *A. Wijdeveld*

Airborne Particulate Matter Toxicity: Key Players and Modes of Action

Martin Shafer

WP168 Contrasting Water-Soluble Dithiothreitol (DTT) and Ascorbic Acid (AA) Activities: Spatiotemporal Trends, Source Apportionment, and Health Impacts | *T. Fang*

WP169 Oxidative Potential of Ambient Particulate Matter in Southeastern United States and the Generation of Reactive Oxygen Species | *V. Verma*

WP170 A Murine Model of Allergic Inflammation and Immune Sensitization on Exposure to Ambient Ultrafine Particulate Matter and Engineered Nanoparticles | *M. Williams*

WP171 Predicting species-specific exposures to ambient particulate matter in indoor air | *N. Hodas*

WP172 Physicochemical Composition of Ambient Respirable Dust in the Urban Setting: the Case of Kitwe City | *P. Mwaanga*

Sources, Concentrations, Fate and Effects of Organophosphate Flame Retardants and Plasticizers

Liisa Jantunen, Miriam Diamond

WP173 Organophosphate ester concentrations in Toronto tributaries, rain water, and waste water treatment plants | *J. Truong*

WP174 Concentrations and Trends of Organophosphate Esters in the Great Lakes Atmosphere | *A. Peverly*

WP175 Organophosphate flame retardants in the Canadian Arctic | *L. Jantunen*

WP176 Assessment of Spatial and Temporal Distribution of Current-Use Organophosphate Esters in Houston, Texas | *A. Clark*

WP177 Organophosphorus Flame Retardants in influent, effluent and biosolids in Canadian Wastewater Treatment Plants | *A. De Silva*

Track

Aquatic Toxicology and Ecology

Integrated Env Assessment and Management

Environmental or Analytical Chemistry

Linking Science and Social Issues

Wednesday Poster Presentations

WP178 From clothing to laundry water: Investigating the fate of chemicals of concern sorbed to fabrics | *M. Diamond*

WP179 Baby Product Ownership and Infant's Exposure to Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP) | *H. Stapleton*

Aquatic Toxicology and Ecology General - Part 3

Scott Belanger

WP180 A Refined Multi-Site Model to Estimate the Toxicity of PAH-Contaminated Sediments at MGP Sites | *M. Kierski*

WP181 Acute and chronic toxicity of select neonicotinoids to aquatic invertebrates | *M. Raby*

WP182 An Effect Evaluation of Herbicides on Aquatic Communities | *R. Connon*

WP183 Antibiotics and Antibiotic Resistance in Minnesota Surface Waters | *M. Andreone*

WP184 Approaches for Assessing Ecological Hazard of Perfluorinated Chemicals in the USEPA TSCA New Chemicals Program | *J. Gallagher*

WP185 Assessing the Effects of Sediment Aging During Chronic Hydrophobic Organic Compound Toxicity Tests Using *L. variegatus* | *J. Butler*

WP186 Assessment of the toxicity and bioaccumulation of sediment-derived substituted phenylamine antioxidants in freshwater invertebrates | *P. Gillis*

WP187 Bioturbation and Behavior of *Lepidophthalmus louisianensis* in Response to the Presence of Crude Oil | *A. Kascak*

WP188 Chironomus riparius: A tool for studying the ecological effects of inert "safernes" | *K. Bolyard*

WP189 Comparative Evaluation of the Efficacy of *Leptocheirus pluvialis* Acute and Chronic Sublethal Test | *D. Farrar*

WP190 Comparative responses of freshwater organisms to commercial naphthenic acid exposures | *C. Kinley*

WP191 Comparing experimental designs and statistical analyses to estimate critical thresholds in Ecotoxicology | *M. Krull*

WP192 Comprehensive review of ecological injury from legacy contaminants for Natural Resource Damage Assessments: Polychlorinated biphenyl (PCB) case study | *J. Berninger*

WP193 Dioxin-like activity in hornyhead turbot diet-derived exposed to polluted sediments from Palo Verdes by bioassay: contribution of DDT metabolites | *G. Xu*

WP194 Effect of herbicide surfactant, polyethoxylated tallowamine, on oviposition and viability of eggs of rams-horn snail, *Planorbella pilosbryi* | *R. Prosser*

WP195 Effect of narcotics on membrane-bound mitochondrial processes in fish | *L. Vergauwen*

WP196 Estimation of Site-specific PAH Leaching from Creosote Treated Piles in the Aquatic Environment | *A. Blanc*

WP197 Evaluating the toxicity of perfluoroalkyl sulfonates (PFASs) to a sensitive invertebrate, the mosquito *Aedes aegypti* | *A. Olson*

WP198 Fluoranthene and Ultra Violet light DNA damage and repair in *Artemia franciscana* | *M. del Carmen Guzman Martinez*

WP199 Growth and physiological effects in *Ankistrodesmus falcatus* and *Microcystis aeruginosa* exposed to 2,4-D | *E. Martinez Ruiz*

WP200 Investigating the potential effects of pollutants on the gastrointestinal microbiome of rainbow trout (*Oncorhynchus mykiss*) | *A. Moate*

WP201 Neurotoxic and behavioral effects of carbaryl and glyphosate pesticides on killifish (*Fundulus heteroclitus*) | *A. Everett*

WP202 Relationships Between Sediment Toxicity and Contaminant Concentrations in Newtown Creek Superfund Site | *J. Cura*

WP203 The Effect of Bifenthrin Exposure Related to the Dopaminergic Pathway in Embryos of Zebrafish (*Danio Rerio*) | *L. Becker Bertotto*

WP204 The interplay between biota and pollutants: ghost shrimp affect environmental conditions and aromatic hydrocarbon distribution in laboratory mesocosms | *P. Klerks*

WP205 Thyroid hormone disrupting effects of water-accommodated fractions (WAFs) of oil-implication of oil pollution | *D. Jung*

WP206 Toxicity of anticoagulant rodenticides in two freshwater fishes to aid test design for Hawaiian triggerfish | *R. Riegerix*

WP207 Toxicity of polychlorinated biphenyls and N-phenyl-1-naphthylamine in juvenile turtle *Chelydra serpentina* | *T. Colson*

Integrated Environmental Assessment and Management General - Part 2

Tim Canfield, Christopher McCarthy

WP208 Air-water Exchange of PAH and OPAH Upstream, Within and Downstream of a Mega-Superfund Site | *L. Tidwell*

WP209 Quantitation of ractopamine in particulate matter emitted from beef cattle feedyards | *K. Wooten*

WP210 Higher-tier surface water exposure modeling approach of veterinary pharmaceuticals administered to beef cattle | *I. Khanijo*

WP211 Establishing a Baseline for Remedial Action in Newtown Creek: Comparing a Superfund Site with Regional Background and New York City CSO Discharges | *E. Garvey*

WP212 Integration of Ecological Risk and treatability Testing in the Development of a Sediment Remedy | *T. Sorell*

WP213 A Comparison of Predicted vs. Actual Near Field Sediment Concentrations in the Lower Willamette | *B. DeShields*

WP214 Using generic population models to evaluate the potential for adverse effects in endangered species risk assessment: a case study approach | *K. Kapo*

WP215 Microcosm Study: Statistical Power Plays a Role in Detecting Treatment-Related Population Effects | *K. Lamichhane*

WP216 Best practices for setting ADEs for pharmaceutical risk assessment and data-derived approaches for moving away from defaults | *A. Willis*

WP217 Green-washing: What Is a Meaningful Ecolabel? | *N. Maples-Reynolds*

WP218 Decision Making Framework for Beneficial Reuse of Produced Water | *M. Pattanayek*

WP219 A hypothesis-driven weight of evidence analysis evaluating endocrine disrupting potential: Triclosan case study | *E. Mihaich*

WP220 Is Triclosan Endocrine Active in a Larval Amphibian Growth and Development Assay (LAGDA)? | *S. Pawlowski*

WP221 Spatial technologies to place veterinary medicine aquatic exposure concentrations into risk context | *J. Amos*

You Set the Standards

We make them!®

Products Include:

- PBDEs (all 209 congeners)
- Fluorinated PBDEs
- PCBs (all 209 congeners)
- Metabolites of PBDEs and PCBs
- US EPA and International Methods
- Additional Flame Retardants
- Pesticides and metabolites
- PAHs, nitro-PAHs, methyl-PAHs
- ASTM Petrochemical Standards
- Biofuels and Physical Standards
- Explosives and metabolites
- Plastic and Polymer additives
- Inorganic Standards
- Full Range of ICP Standards
- Custom Formulations
- Synthesis

AccuStandard®

ISO Guide 34 • 17025 • 9001

NOTES

We've brought together the industry's most respected brands in environmental assessment...

**... to offer you a *better choice* for outsourced
environmental toxicology and chemistry solutions.**

EAG is a leading global provider of mission-critical, high-precision laboratory testing, evaluation and analytical services. We help our clients develop and deliver innovative products to market.

With the recent acquisition of ABC Laboratories and expansion at our Wildlife International facility, EAG offers unparalleled capacity, capabilities and scientific expertise to help our clients solve challenging development issues and meet ever-increasing global regulations. We offer a full suite of GLP-compliant analytical chemistry, metabolism and toxicology services, as well as in-house radiolabeling and protein expression analysis supporting:

- Agrochemical registrations & re-registrations
- Environmental assessments for pharmaceuticals
- Biotech crops & seeds
- REACH and EDSP compliance
- Data call-ins & other regulatory requirements

**PTRL West
PTRL Europe
ABC Laboratories
Wildlife International**

SETAC ORLANDO

6-10 NOVEMBER 2016
ORLANDO, FL, USA

7th SETAC World Congress/
SETAC North America
37th Annual Meeting

*"Fostering Environmental Science
for an Ever-Changing World"*

orlando.setac.org

Thursday 5 November

General Opening Hours

TIME	AREA	LOCATION
7:00 a.m.–3:00 p.m.	Registration	East Registration
8:00 a.m.–5:35 p.m.	Poster Viewing and SETAC Store	Exhibit Hall

Daily Schedule

TIME	EVENT	LOCATION
7:00 a.m.–8:00 a.m.	Poster Setup	Exhibit Hall
8:00 a.m.–9:15 a.m.	Morning Platform Sessions	See session listing
9:15 a.m.–10:00 a.m.	Coffee Break	Exhibit Hall
10:00 a.m.–11:15 a.m.	Morning Platform Sessions cont'd	See session listing
11:15 a.m.–1:00 p.m.	Lunch Break	
1:00 p.m.–2:15 p.m.	Afternoon Platform Sessions	See session listing
2:15 p.m.–3:00 p.m.	Coffee Break	Exhibit Hall
3:00 p.m.–4:15 p.m.	Afternoon Platform Sessions cont'd	See session listing
4:15 p.m.–5:35 p.m.	Poster Social	Exhibit Hall
5:45 p.m.–6:30 p.m.	Closing Ceremony	Ballroom AC

Business Meetings

TIME	MEETING	LOCATION
8:00 a.m.–2:00 p.m.	Global Horizon Scanning Workshop	150 G
11:00 a.m.–1:00 p.m.	2015/2016 Program Committee Luncheon	251 C
3:30 p.m.–4:30 p.m.	API Biomonitoring Task Force	250 CF

Closing Ceremony

5:45 p.m.–6:30 p.m. | Ballroom AC

Join us for the grand finale of the meeting! We will feature highlights from the technical and social program, and preview the exciting events in store for SETAC in 2016, such as the 7th SETAC World Congress/SETAC North America 37th Annual Meeting in Orlando, Florida. Everybody attending will have a chance to win a Hobie kayak or a bike from Salem Cycle.*

THANK YOU TO OUR CLOSING CEREMONY SPONSORS:

Erin R. Bennett

*Must be present to win. SETAC will cover the cost to ship the kayak and bike within the continental US and Canada.

Thursday Morning Platform Presentations

	8:00-8:15	8:20-8:35	8:40-8:55	9:00-9:15
250 AB	Moving Beyond Model Organisms - Next Generation Species Extrapolation Carlie LaLone, Lina Kearney			
250 DE	567 Use of the Adverse Outcome Pathway Framework to Represent Cross-species Consequences of Specific Pathway Perturbations <i>D. Villeneuve</i>	568 Species extrapolation between humans and fish: a two-way street <i>L. Margiotta-Casaluci</i>	569 Leveraging a large scale mammalian pharmacological dataset to prioritize potential environmental hazard of pharmaceuticals <i>J. Berninger</i>	570 Differences in species sensitivity towards the psychiatric drug oxazepam <i>J. Fick</i>
251 AB	Advances in Environmental Metabolomics Drew Ekman, Jonathan Benskin	575 An in vivo metabolomic study for developmental neurotoxicity of pesticides, combining cognitive and motor function effects with metabolomic pathways <i>S. Huang</i>	576 An in vivo metabolomic study for developmental neurotoxicity of pesticides, combining cognitive and motor function effects with metabolomic pathways <i>P. Leonards</i>	577 Applying high resolution mass spectrometry and network analysis to assess effects of a novel androgen, spironolactone, on metabolic pathways in fish <i>J. Davis</i>
Ballroom AC	Reverse Toxicokinetics in Aquatic Organisms Scott Lynn, Irvin Schultz, Edward Perkins	583 Applying PBTK and Compartmental Models for Reverse Toxicokinetics: Interspecies Differences and Environmental Influences <i>I. Schultz</i>	584 Reverse toxicokinetic models of fathead minnow (<i>Pimephales promelas</i>) and zebrafish (<i>Danio rerio</i>) for in vitro to in vivo extrapolation <i>M. Mayo</i>	585 Toxicokinetic modeling of contaminants in marine mammals: why reverse dosimetry is often inevitable <i>L. Weis</i>
Ballroom B	Ecotoxicity Technical Advisory Panel: Honoring 20 Years of Scientific Contributions to Metals Risk Assessment Chairs: ----->	590 Ecotoxicity Technical Advisory Panel - Purpose and Development <i>E. Doward-King</i>	591 Scientific advances in aquatic metal ecotoxicology <i>R. Blust</i>	592 Scientific advances in sediment metal ecotoxicology <i>G. Burton</i>
Ballroom D	Current and Emerging Tools and Approaches for Ecosystem-Focused Chemical Assessments Involving Data Gaps Anne Doherty, Kelly Moran, Timothy Malloy	598 Consumer Product Chemical Ingredient Assessment Eco-Gap": Regrettable Examples and Improvement Opportunities" <i>K. Moran</i>	599 Managing Uncertainty in Regulatory Alternatives Analysis <i>T. Malloy</i>	600 ECOSAR Version 2.0. Update and Redesign of USEPA Office of Pollution Prevention and Toxics Aquatic Toxicity Expert System <i>J. Tunkel</i>
Ballroom E	The Continuing Evolution of Sediment Toxicity Methods and Data Interpretation Christian Picard, Chris Ingwersoll, Curtis Eickhoff	605 Refining methods for conducting long-term sediment and water toxicity tests with Chironomus dilutus: Formation of a Midge Chronic Testing Work Group <i>C. Ingwersoll</i>	606 Evaluating the relative sensitivity of endpoints generated during midge life-cycle sediment toxicity tests <i>T. Valenti</i>	607 Age-related sensitivity of three common sediment assay organisms exposed to a representative pyrethroid insecticide <i>M. Bradley</i>
Ballroom F	Modeling Chemical Exposure - Part 2 Todd Gouin, Matthew MacLeod	613 Modeling chemical fate and transport in the air-skin system to understand human exposure potential <i>E. Webster</i>	614 Exposure to chemicals in consumer products: A parsimonious model for chemicals encapsulated in products <i>L. Huang</i>	615 Exploring Chemical Exposure via Food Imports: The Hazards of a Globalized Diet <i>C. Ng</i>
Ballroom G	Bioaccumulation in Management and Regulation Doris E. Vidal-Dorsch, Frank Gobas	621 A Bioenergetic Bioaccumulation Model for Persistent Organic Pollutants in Aquatic and Terrestrial Food Webs <i>Y. Fan</i>	622 Assessing dioxin/furan bioaccumulation from historically contaminated sediments using a novel modification of the bedded sediment bioaccumulation test <i>M. Sanborn</i>	623 Gastro-intestinal and Somatic Biotransformation in Fish: Implications on BCF and BMF Measurements and Regulatory Interpretation <i>J. Lo</i>
Ballroom H	Molecular, Individual and Population Effects of Contaminants in Herpetofauna and Incorporation Into Risk Assessment Scott Weir, Stacey Lance	629 Development of a standardized toxicity test method for Northern Leopard Frog (<i>Lithobates pipiens</i>) in Canada <i>L. Van der Vliet</i>	630 Development of an Acute Oral Gavage Method for the Evaluation of Pesticide Toxicity in Terrestrial Amphibians <i>D. Fort</i>	631 Toxicity of Pyraclostrobin Fungicides to Terrestrial Amphibians <i>P. Cusaac</i>
Ballroom I	Environmental Risk Assessment of Veterinary Pharmaceuticals Christopher Holmes, Holly Zahner, Eric Silberhorn	637 New developments in the environmental risk assessment of veterinary medicinal products in the EU <i>S. Hickmann</i>	638 Benign by design' testing of chemicals by means of simple STP/ UW modeling <i>D. van de Meent</i>	639 Estimation of veterinary drug concentrations in Canadian soils: Do the PECs MEC Sense? <i>S. Kullik</i>
Ballroom J	Sustainability Metrics: LCA and Beyond David Meyer, Annie Weisbrod, Susan Csiszar	645 LCA: leading to a decrease in the use of natural resources <i>W. Motta</i>	646 Beyond GDP - national accounting in the age of resource depletion <i>M. Carbajales-Dale</i>	647 LCA and its application on the path to circular economy <i>W. Motta</i>
Track	Aquatic Toxicology and Ecology	Integrated Env Assessment and Management	Environmental or Analytical Chemistry	Linking Science and Social Issues

Thursday Morning Platform Presentations

10:00-10:15		10:20-10:35		10:40-10:55		11:00-11:15			
Moving Beyond Model Organisms – Next Generation Species Extrapolation Carlie LaLone, Lina Kearney									
571 Cross-species Extrapolation of Mammalian-Based ToxCast Data using Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) <i>C. LaLone</i>		572 Development of fully-automated pipelines for the identification of protein targets and susceptible wildlife species <i>O. Price</i>		573 Conservation of biological pathways across non-animal models drives chemical effects <i>M. Wilbanks</i>		574 Exploiting genomics to predict environmental risk of pharmaceuticals <i>L. Kearney</i>			
Advances in Environmental Metabolomics Drew Ekman, Jonathan Benskin									
579 Effects of drilling muds on the deep-water sponge <i>Geodia baretti</i> studied by metabolomics and metagenomics <i>T. Størseth</i>		580 Targeted metabolomics fingerprint responses in teleosts exposed to contaminants in the lab and the field <i>B. Chandramouli</i>		581 Using 1H NMR-based metabolomics to analyze <i>Daphnia magna</i> responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen <i>V. Kovacevic</i>		582 Using 1H NMR-based Metabolomics to Detect Biochemical Changes in <i>Daphnia magna</i> in Response to Sub-Lethal Malathion, Diazinon and Bisphenol A Exposures <i>E. Nagato</i>		250 AB	
Reverse Toxicokinetics in Aquatic Organisms Scott Lynn, Irvin Schultz, Edward Perkins									
587 PBTK Modeling Helps Prediction of Fish Growth From Cell Line Experiments <i>A. Zupanic</i>		588 Development of screening level hazard thresholds using in vitro to in vivo extrapolation of zebrafish embryo transcriptional points of departure <i>E. Perkins</i>		589 Incorporating Modeling and Visualization Tools to Assess Environmental Exposures and Fish Toxicokinetics following Deepwater Horizon Spill <i>C. Strope</i>		Discussion			
<---- Title G. Allen Burton, Andrew Green, Christian Schlekat, Eric Van Genderen									
594 The role of chemical speciation in the risk assessment of metals <i>P. Campbell</i>		595 Evolution of Bioavailability-Based Risk Assessment: How Was It Done and Why Was It Successful? <i>D. Di Toro</i>		596 Ecotox Technical Advisory Panel (ETAP) Impact of Twenty Years of Research on Chemical Management Frameworks <i>W. Adams</i>		597 Future challenges in metals risk assessment: Building upon the current state of the science <i>E. Garman</i>			
C									
O									
F									
E									
E									
R									
E									
A									
K									
Current and Emerging Tools and Approaches for Ecosystem-Focused Chemical Assessments Involving Data Gaps Anne Doherty, Kelly Moran, Timothy Malloy									
602 Screening Assessment of Relative Hazard to Fish from Emerging Contaminants in the Great Lakes Basin <i>D. Gefell</i>		603 Filling ecotoxicity data gaps to define safer chemicals: USEPA Safer Choice/DFE Experience <i>E. Lavoie</i>		604 Life Cycle Management and Toxicity Assessment: Apples and Oranges; or Two Sides of the Same Coin? <i>L. Heine</i>		Discussion			
The Continuing Evolution of Sediment Toxicity Methods and Data Interpretation Christian Picard, Chris Ingersoll, Curtis Eickhoff									
609 Improving survival and reproduction in the 28-day Marine Amphipod (<i>Leptocheirus plumulosus</i>) Sediment Test <i>H. Krueger</i>		610 Draft ASTM International standard for conducting laboratory sediment toxicity test with juvenile freshwater mussels <i>J. Besser</i>		611 Effect-directed analysis of sediment-bound contaminants: Application of passive dosing to incorporate bioavailability into in vivo toxicity testing <i>J. You</i>		612 Using Spiked Bioassays to Address Chemicals Without Sediment Benchmarks: Example Case Study – Barium in Freshwater Sediments <i>J. Hedgecock</i>			
Modeling Chemical Exposure – Part 2 Todd Gouin, Matthew MacLeod									
617 Long-range oceanic transport of perfluoroalkyl acids to the Arctic and their temporal trends <i>X. Zhang</i>		618 Temporal trends in air-sea exchange of polychlorinated biphenyls (PCB) and implications for the Arctic <i>H. Amos</i>		619 The Development of a Bioaccumulation Model of Los Angeles and Long Beach Harbor for Evaluation of TMDL Compliance <i>E. Lamoureux</i>		620 Modeling Rate-Limited Mass Transfer at Contaminated Sediment Sites <i>P. Israelsson</i>			
Bioaccumulation in Management and Regulation Doris E. Vidal-Dorsch, Frank Gobas									
626 Technical and Decision-Making Implications of Biomagnification-Based Water Quality Criteria for Mercury <i>U. Vedagiri</i>		627 Temporal Data Provide Evidence of Natural Recovery and Confirmation of Portland Harbor Bioaccumulation Model Projections <i>J. Toll</i>		628 The Effects of Fish Consumption and Bioaccumulation Rates on Relative Source Contribution and Human Health Water Quality Criteria <i>D. Essig</i>		625 Mercury Discharge into the Ohio River in an Evolving Regulatory Environment <i>C. Tuitt</i>			
Molecular, Individual and Population Effects of Contaminants in Herpetofauna and Incorporation Into Risk Assessment Scott Weir, Stacey Lance									
633 In search of physiological and behavioral patterns in snakes during chemical exposure <i>L. Neuman-Lee</i>		634 How coal combustion waste influences phenotypic variation of an amphibian through genetic and maternal effects <i>R. Flynn</i>		635 Understanding the population-level consequences of copper toxicity and climate variability on amphibians inhabiting contaminated environments <i>S. Weir</i>		636 Using mercury concentration, age class and DNA methylation for population health modeling in the American alligator (<i>Alligator mississippiensis</i>) <i>F. Nilsen</i>			
Environmental Risk Assessment of Veterinary Pharmaceuticals Christopher Holmes, Holly Zahner, Eric Silberhorn									
641 Environmental fate of trenbolone acetate metabolites: Recent progress and remaining challenges posed by bioactive transformation products <i>D. Cwiertny</i>		642 Approach to the Environmental Risk Assessment for a Cattle Implant Containing Estradiol and Trenbolone <i>E. Silberhorn</i>		643 Expanding our knowledge of exposure as part of the Environmental Assessment for a veterinary medicine <i>C. Holmes</i>		644 Analysis of Environmental Effects and Potential Risks due to a Cattle Implant Containing Estradiol and Trenbolone <i>H. Zahner</i>			
Sustainability Metrics: LCA and Beyond David Meyer, Annie Weisbrod, Susan Csiszar									
649 Life-Cycle Case Study Comparison of Various Remediation Technologies at the Geneva Industries Superfund Site <i>C. Zhang</i>		650 Modeling Approaches to Explore Food System Regionalization as a Sustainability Strategy <i>N. Tichenor</i>		651 Customer Impact Product Profile: a platform for product sustainability assessment <i>X. Yang</i>		652 Dynamic LCA model for air quality impacts in a regional energy conservation district <i>W. Collinge</i>			
Targeted and Non-Targeted High-Resolution Mass Spectrometry investigations in Environmental Media Mark Strynar, Lee Ferguson, Christopher Higgins									
657 Sensitive Screening of Pharmaceuticals and Personal Care Products (PPCPs) in Water Using Agilent 6545 LC/Q-TOF High Resolution Mass Spectrometer <i>C. Marvin</i>		658 Comprehensive analytical method for polar-organic compounds in water samples by liquid chromatography time-of-flight mass spectrometry <i>H. Chau</i>		659 Identification of novel per- and polyfluorinated compounds in AFFF-impacted groundwater <i>S. Roberts</i>		Discussion			
Regulatory Directions		Remediation/Restoration		Special Symposia		Terrestrial or Wildlife Toxicology and Ecology			
Track		Ballroom J		Ballroom I		Ballroom H		Ballroom G	
Ballroom F		Ballroom E		Ballroom D		Ballroom C		Ballroom B	
Ballroom G		Ballroom F		Ballroom E		Ballroom D		Ballroom C	
Ballroom H		Ballroom I		Ballroom J		Ballroom K		Ballroom L	
Ballroom I		Ballroom J		Ballroom K		Ballroom L		Ballroom M	

 Presentation will not be recorded.

Thursday Afternoon Platform Presentations

	1:00-1:15	1:20-1:35	1:40-1:55	2:00-2:15
250 AB	Biases and Conflicts of Interest in Ecotoxicology: Perspectives From Academia, Government and Industry Christine Lehman			
250 DE	Assessing the Potential for Multi-Ion Toxicity Paul Paquin, Kevin Brix, Charles Delos, Rasa Bubnyte	661 White Hat Bias in the Environmental Sciences A. LeHuray	662 Exploration of how scholarship in developing novel techniques can potentially mitigate bias and conflict of interest in academia C. Murphy	663 Inherent bias in the terminology, guidance and methods used in environmental toxicology and risk assessment W. Landis
251 AB	Environmental Fate, Transport and Modeling of Agricultural Chemicals Scott Jackson	668 Relationship between ecoregional background specific conductivity and salt-intolerant genera S. Cormier	669 Expressing total dissolved solids toxicity as conductivity or individual ions? W. Goodfellow	670 Interactive toxicity of major ion salts: Comparisons among species and between acute and chronic endpoints D. Mount
Ballroom AC	Improving the Usability of Ecotoxicology in Regulatory Decision-Making Jane Staveley, Marlene Agerstrand	676 USEPA Office of Pesticide Programs (OPP) Aquatic Exposure Assessment: Overview of Current & Future Practices M. Corbin	677 Tillage impact on herbicide loss by surface runoff and lateral subsurface flow T. Potter	678 Influence of temperature, relative humidity, and soil properties on pesticide soil-air partitioning: Laboratory measurements and predictive models K. Hageman
Ballroom B	Solution-Focused Risk Assessment John Toll, Marc Greenberg	684 Improving the usability of ecotoxicology in regulatory decision-making: initial findings from a SETAC Pellston Workshop J. Staveley	685 All the science that's fit to print! M. Hanson	686 Reliability criteria for evaluating studies: Improving evaluation of ecotoxicity studies – Report from WG2 K. Solomon
Ballroom D	"-Omic" Technologies and Their Real-World Applications Adam Biales, Doris E. Vidal-Dorsch	691 Evaluating management actions as part of a quantitative ecological and human health risk assessment M. Harris	692 Getting more bang for your buck in ecological field programs to support risk assessment and natural resource damages assessment H. Summers	693 Improving Oregon's Ecological Risk Assessment Framework J. Toll
Ballroom E	Environmental mixtures of chemicals: Aquatic exposure-based approaches for simplification and implementation Christopher Holmes, Derek Muir, Scott Dyer	698 A novel "Integrated Biomarker Proteomic" index to assess the effects of freshwater pollutants in endangered species F. Silvestre	699 Adverse Outcome Pathways underlying narcosis toxicity and the use of -omics technologies for screening potential narcotic chemicals E. Brockmeier	694 An all-in-one ecological risk assessment (ERA) tool: AIST-MeRAM B. Lin
Ballroom F	Fate and Effects of Selenium Steven Canton, Kristin Bridges	706 Pellston Overview: Simplifying environmental mixtures – an aquatic exposure-based approach via exposure scenarios G. Burton	707 Aquatic exposures to chemical mixtures: an urban typology D. Muir	708 Assessment of PAH Contribution to Superfund Site Hazard Using a Representative PAH Mixture and a Zebrafish Developmental Toxicity Model J. Minick
Ballroom G	Ecosystem Services, Environmental Management and Decision Making Wayne Munns, Anne Rea	714 Concentration dependence and interspecific differences in selenium partitioning between fish tissues A. deBruyn	715 An adverse outcome pathway for the interaction between selenomethionine and hypersalinity in Japanese medaka (<i>Oryzias latipes</i>) embryos A. Kupsco	716 Selenium toxicity to fish: the derivation and application of a multi-species dose-response slope E. Costa
Ballroom H	Integrating Exposure and Effects to Assess and Manage Risk of Contaminants of Emerging Concern Susan Glassmeyer, Edward Furlong, Marc Mills, Herbert Buxton	722 How to identify and assess ecosystem services approaches in decision making P. Calow	723 Using ecological production functions to link ecological processes to ecosystem services L. Kapustka	724 Ecosystem Services in Risk Assessment and Management W. Munns
Ballroom I	What Do We Know About the Ecological Risk of Consumer and Personal Care Product Ingredients? Paul DeLeo, Iain Davies, James Lazorchak, Drew McAvoy	730 Integrated Research to Assess Contaminants of Emerging Concern in the Environment S. Glassmeyer	731 Environmental Chemical Mixtures: A Field Approach to Assessing Exposure and Effects P. Bradley	732 Transport of pharmaceuticals and other emerging contaminants from wastewater discharge through surface water to drinking water intake and treatment E. Furlong
Ballroom J	Nanomaterials Toxicology: Methods for Screening for Nano-Unique Hazard Alan Kennedy, Natalia Vinas	738 Photofate of the uv-filters benzophenone-3 (oxybenzone) and benzophenone-4 (salisobenzene) in natural waters M. Semones	739 The effect of salinity on the organic carbon/water partition ratios (Koc) of cyclic volatile methylsiloxanes (cVMS) D. Panagopoulos	740 Evaluating the effects of triclosan on the rhizosphere of field crops in biosolids-amended soil R. Shahmohamadloo
Track	Aquatic Toxicology and Ecology	Integrated Env Assessment and Management	Environmental or Analytical Chemistry	Linking Science and Social Issues

Thursday Afternoon Platform Presentations

3:00-3:15		3:20-3:35		3:40-3:55		4:00-4:15			
Biases and Conflicts of Interest in Ecotoxicology: Perspectives From Academia, Government and Industry Christine Lehman									
664 Regulatory decisions will only be as credible as the science upon which the risk is evaluated <i>C. Bishop</i>		665 Assessing Data to Support Regulatory Decisions: A USEPA Perspective <i>T. Steeger</i>		666 Mechanisms that ensure the Reliability and Credibility of Science and Scientists in the Crop Biotechnology and Crop Protection Industries <i>S. Levine</i>		667 Industry approaches to minimizing bias and promoting environmental health and sustainability <i>C. Lehman</i>			
Assessing the Potential for Multi-Ion Toxicity Paul Paquin, Kevin Brix, Charles Delos, Rasa Bubnyte									
672 Influence of dilution water composition on acute major ion toxicity to the mayfly <i>Neocloeon triangulifer</i> <i>D. Soucek</i>		673 Osmoregulatory patterns in aquatic insects: What we know and where we need to go <i>D. Buchwalter</i>		674 Modeling the Aquatic Toxicity of Major Ions Using Electrochemical Potential <i>C. Delos</i>		675 Modeling the Aquatic Toxicity of Major Ions: Application of a Physiologically-Based Framework <i>R. Bubnyte</i>			
Environmental Fate, Transport and Modeling of Agricultural Chemicals Scott Jackson									
680 Occurrence of Current-Use Fungicides and Bifenthrin in Rainwater Basin Wetlands <i>W. Mimbs</i>		681 Ecological Risk Assessment for Aquatic Invertebrates Exposed to Imidacloprid Part A: Exposure Assessment <i>M. Winchell</i>		682 Development of Contributing Factors Influencing the Physical Description of Spray Drift Deposition <i>R. Gali</i>		683 Fate of phenylpyrazole pesticides in a wastewater treatment plant and engineered wetland <i>S. Supowitz</i>			
Improving the Usability of Ecotoxicology in Regulatory Decision-Making Jane Staveley, Marlene Agerstrand									
688 Weight of Evidence Approaches in Improving the Usability of Ecotoxicology in Regulatory Decision-Making <i>T. Hall</i>		689 Methods to increase regulatory impact of ecotoxicological research <i>R. Wentzel</i>		690 Data Should NOT be Normalized to the Control for Analysis <i>J. Green</i>		Discussion			
Solution-Focused Risk Assessment John Toll, Marc Greenberg									
695 Successful Assessment, Remediation, and Closure of Remote California ATON Sites Through Regulator, Responsible Party, and Stakeholder Cooperation <i>M. Luxon</i>		696 The 10th Criterion: Inter-comparison of Net Ecosystem Services as a Means to Evaluate Superfund Remedial Alternatives <i>N. Osman</i>		697 Ecological risk assessment and improved conservation outcomes for water quality criteria consultations under the Endangered Species Act <i>T. Augspurger</i>		Discussion			
-.Omic" Technologies and Their Real-World Applications Adam Biales, Doris E. Vidal-Dorsch									
702 In Situ Field-Based Metabolomics for Evaluating the Impacts of Contaminants of Emerging Concern Relative to Other Stressors <i>T. Collette</i>		703 Individual variability in fish transcriptomes: The influence of reproductive strategy and gonadal stage <i>D. Dreier</i>		704 Integrating high-throughput RNA sequencing in the health assessment of yellow perch populations from the St. Lawrence River, Canada <i>M. Houde</i>		705 Moving 'omics into environmental regulation: issues, applications and a path forward <i>A. Biales</i>			
Environmental mixtures of chemicals: Aquatic exposure-based approaches for simplification and implementation Christopher Holmes, Derek Muir, Scott Dyer									
710 Using prospective assessment to assess mixtures in municipal wastewater effluents <i>J. Diamond</i>		711 A retrospective approach to assessing mixtures in municipal wastewater effluents <i>K. Kidd</i>		712 Seasonal and spatial variations of ecotoxicity and basic water quality in two watershed areas in Japan: Multivariable analyses to find a trend <i>H. Yamamoto</i>		713 Risk assessment for mixtures of agricultural chemicals in surface water; a SETAC Pellston workshop update <i>C. Holmes</i>			
Fate and Effects of Selenium Steven Canton, Kristin Bridges									
718 Using dynamic modeling to determine the mechanisms of selenium biotransformation in green algae <i>A. Zupanic</i>		719 Enrichment Factor Variation in Calibration of a Selenium Bioaccumulation Model <i>H. Ohlendorf</i>		720 Comparison of one-step versus multi-step selenium bioaccumulation models in support of developing aqueous environmental benchmarks <i>J. Van Geest</i>		721 Future Selenium Research Priorities <i>P. Chapman</i>			
Ecosystem Services, Environmental Management and Decision Making Wayne Munns, Anne Rea									
726 A Demonstration of the Feasibility of Utilizing the Ecosystem Services Concept and Non-chemical Stressors in a Complex Environmental Problem <i>C. Stahl</i>		727 Using Ecosystem Service Indicators to Prioritize Land Conservation Investments: An Application for the Taunton River Watershed <i>G. Van Houtven</i>		728 Ecosystem services as risk assessment endpoints for the South River, VA <i>M. Harris</i>		729 Carbon Sequestration potential in agricultural drainage ditches <i>O. Iseyemi</i>			
Integrating Exposure and Effects to Assess and Manage Risk of Contaminants of Emerging Concern Susan Glassmeyer, Edward Furlong, Marc Mills, Herbert Buxton									
734 Wastewater to drinking water: In vitro estrogen, androgen, and glucocorticoid activity along an urban river system <i>J. Conley</i>		735 Application of a miniaturized Ames assay for high-throughput effect-directed analysis of water samples using microfractionation <i>M. Lamoree</i>		736 1,4-Dioxane: Occurrence, sources, and treatment options for an emerging surface water contaminant <i>C. Lopez-Velardia</i>		737 Halogenated Carbazoles in San Francisco Bay <i>D. Chen</i>			
What Do We Know About the Ecological Risk of Consumer and Personal Care Product Ingredients? Paul DeLeo, Iain Davies, James Lazorchak, Drew McAvoy									
742 Environmental Risk Assessment Framework for Down-the-Drain" Consumer Product Chemicals in China" <i>M. Fan</i>		743 Screening Level Environmental Risk Assessment (ERA) of Cosmetic Ingredients in the USA and Beyond <i>I. Davies</i>		744 Mapping risk assessment priorities for HPC ingredients: a chemical space analysis <i>T. Guoin</i>		745 Using Weight of Evidence to Evaluate Potential Effects of Trace Organics on Aquatic Life <i>J. Wolfe</i>			
Nanomaterials Toxicology: Methods for Screening for Nano-Unique Hazard Alan Kennedy, Natalia Vinas									
750 Comparative Bioavailability and Toxicity of Silver Nitrate and Silver Nanoparticles Across a Salinity Gradient in <i>Fundulus grandis</i> Embryos <i>C. Tseng</i>		751 The zebrafish embryo as a model to determine unique and specific biological impacts of nanoparticles <i>N. Vinas</i>		752 Novel methods for quantifying, predicting, and screening for, nano-unique phototoxicity of TiO2; an example based on cementitious TiO2 <i>S. Diamond</i>		753 Silver nanoparticle toxicity in a marine gastropod <i>Telescopium</i> , a potential biomonitor of tropical intertidal mangrove sediments <i>S. Palani</i>			
Regulatory Directions		Remediation/Restoration		Special Symposia		Terrestrial or Wildlife Toxicology and Ecology			

Thursday Poster Presentations

Schedule

Setup 7:00 a.m.–8:00 a.m.

Take Down 5:35 p.m.–6:00 p.m.

Presenters are expected to attend their poster during all break periods and evening poster social to discuss their work with scientists visiting their poster.

Coffee Breaks 9:15 a.m.–10:00 a.m. and 2:15 p.m.–3:00 p.m.

Lunch Break 11:15 a.m.–1:00 p.m.

Poster Social 4:15 p.m.–5:35 p.m.

Environmental Benefits and Ecosystem Accounting: Getting to Resolution

Lisa Saban, Richard Wenning

RP001 Endpoints at war: using integrated human services and ecological risk assessment to evaluate trade-offs in ecological restoration and remediation | *W. Landis*

RP002 Informing Decisions and Investments for Resilient Engineering and Ecosystems | *T. Bridges*

RP003 Innovative Remediation and Habitat Restoration Approaches on Corporate Lands: A Case Study of Wetland Mitigation in a Heavily Industrialized Waterfront | *M. Laska*

RP004 Utility of Environmental Accounting To Inform Eco-Restoration Decisions and Investments | *R. Wenning*

RP005 Will access to mitigation bank restoration credits result in the efficient resolution of natural resource damage claims? | *M. Johns*

Environmental Fate, Transport and Modeling of Agricultural Chemicals

Scott Jackson

RP006 Effects of environmental factors on neonicotinoid degradation | *M. McManus*

RP007 Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: Implication for a regional risk assessment | *H. Li*

RP008 Joint toxicity of thiamethoxam and propiconazole to *Lumbricus variegatus* and *Chironomus riparius* | *V. Carrasco Navarro*

RP009 Moving Towards a Probabilistic Analysis of Wildlife Exposure to Treated Seed in Risk Assessment | *K. Garber*

RP010 Occurrence of Neonicotinoid Pesticides in Urban Wastewater Infrastructure | *A. Sadaria*

RP011 Organophosphate Pesticides, Surface Water, and California Agriculture | *A. Patton*

RP012 Pesticide sediment partitioning and exposure modeling | *B. Marsh*

RP013 Photodegradation of 2,6-dichloro-4-nitroaniline (DCNA) in Freshwater and Saltwater | *E. Vebrosky*

RP014 Quantum yields for direct photolysis of neonicotinoid insecticides in water: Implications for exposure to non-target aquatic organisms | *J. Challis*

RP015 Tissue distribution of organochlorine pesticides (OCPs) in largemouth bass (*Micropterus salmoides*): case studies with a single oral dose and wild fish | *V. Dang*

RP016 Unsaturated column for evaluation of pesticide behavior in soil | *L. Gui*

RP017 Mitigation strategies for reducing aquatic toxicity from organophosphate pesticides in cole crops | *B. Phillips*

RP018 Ecological Risk Assessment for Aquatic Invertebrates Exposed to Imidacloprid Part B: Effects Metrics and Risk Characterization | *M. Whitfield Aslund*

The Continuing Evolution of Sediment Toxicity Methods and Data Interpretation

Christian Picard, Chris Ingersoll, Curtis Eickhoff

RP019 Method Refinements for the Midge, *Chironomus dilutus*, Life-cycle Test | *T. Norberg-King*

RP020 Age-related sensitivity of three common sediment assay organisms exposed to a representative pyrethroid insecticide | *M. Bradley*

RP021 An evaluation of endpoint sensitivity for benthic invertebrate chronic toxicity tests | *J. Gates*

RP022 Evaluating the toxicity of Southeastern USA stream sediments with *Hyalella azteca*, *Chironomus dilutus*, and *Lampsilis siliquoidea* | *N. Kemble*

RP023 Evaluation of sediment chemistry and sediment toxicity in wadable streams of the Midwestern US | *P. Moran*

RP024 Comparison of effects to embryos of fresh and salt water medaka using new toxicity test with real sediments | *S. Uno*

RP025 Effects of sediments collected from real environment to Japanese medaka (*Oryzias latipes*) embryos | *K. Emiko*

Bioaccumulation in Management and Regulation

Doris E. Vidal-Dorsch, Frank Gobas

RP026 Development of a Bioaccumulation Model for DDTs in a Pelagic Food Web | *J. Arblaster*

RP027 Framework for Addressing Bioaccumulation Potential of Human Pharmaceuticals | *D. Huggett*

RP028 Hepatic biotransformation of 14C-decamethylcyclopentasiloxane (D5) and 14C-decamethyltetrasiloxane (L4) in fish, birds and mammals | *D. Huggett*

RP029 Occurrence and Trophic Magnification of PCNs, HBCDs, and DPs in the Ecosystem of King George Island, Maritime Antarctica | *J. Kim*

RP030 PCBs Associated with Suspended Solids in the Green River Watershed; an Upstream Source to Lower Duwamish Waterway Superfund Site | *D. Williston*

RP031 Site-specific application of the Bioaccumulation and Aquatic System Simulator (BASS) for mercury bioaccumulation in the South River, Virginia | *B. Reese*

Nanomaterials Toxicology: Methods for Screening for Nano-Unique Hazard

Alan Kennedy, Natalia Vinas

RP032 A zebrafish embryo toxicity testing screening framework for determining nano vs. non-nano unique effects | *N. Garcia-Reyero*

RP033 Dissolution of Metal Nanoparticles: Methods for Determining the Contributions to Nanoparticle Toxicity | *J. Steevens*

RP034 Influences of incubation conditions on toxicity of partially insoluble ZnO nanoparticles for seed germination and bacterial bioluminescence | *I. Kong*

RP035 Quantitative Structure – Mesothelioma Potency Model Optimization for Complex Mixtures of Elongated Particles in Rat Pleura | *D. Hoff*

Molecular, Individual and Population Effects of Contaminants in Herpetofauna and Incorporation Into Risk Assessment

Scott Weir, Stacey Lance

RP036 Investigating small molecule changes in Diamondback Terrapins in response to chronic mercury exposure using 1H NMR-based metabolomics | *F. Nilsen*

RP037 Blood chemistry analysis of Nile Crocodiles (*Crocodylus niloticus*) from Kruger National Park and Flag Boshelo Dam, South Africa | *M. Guillette*

RP038 Contamination in Snakes and food-web structure among snake species in the Okanagan Valley, BC | *C. Bishop*

What Do We Know About the Ecological Risk of Consumer and Personal Care Product Ingredients?

Paul DeLeo, Iain Davies, James Lazorchak, Drew McAvoy

RP039 Hormonal related genes are affected by UV filters 4MBC and BP3 in the midge *Chironomus riparius* | *J. Martinez-Guitarte*

RP040 Endocrine disruption via enzyme exhaustion: Triclosan elevates estradiol levels in the female mouse | *T. Pollock*

RP041 A comparison between temperate and subtropical regions; bioaccumulation and toxicity of sediment-associated Triclosan in *Tubifex tubifex* | *R. Windfeld*

RP042 Toxicological responses following water exposure to ethylhexyl methoxycinnamate in Japanese medaka (*Oryzias latipes*) | *I. Lee*

RP043 IFRA Environmental standards: Risk and hazard assessment update for 2015 | *A. Lapczynski*

RP044 Spatial Distribution of Synthetic UV Screen and Wastewater Chemicals in Marine Waters Adjacent to Two High-Use Beaches | *T. Bargar*

RP045 Practical development and application of a Mexico Dilution Model for environmental exposure assessments of down-the-drain chemicals | *S. Quinn*

RP046 Development of iSTREEM® 2.0, new enhancements for down-the-drain model to support environmental exposure assessments across multiple commodity groups | *R. Vamshi*

Ecological Soil Screening Levels: Evaluating Their Applicability From an Ecologically Realistic Perspective

Steven Jones

RP047 Making the World Safe for Shrews: Good Policy and Good Science or Unintended Consequence of Conservatism? | *D. Smith*

RP048 Do Ecological Soil Screening Levels Really Work? | *R. Wenning*

RP049 Refining Ecological Soil Screening Levels Using Benchmark Dose Analysis | *D. Skall*

RP050 Putting toxicological risks to plant life on île Rouge, Quebec into context through the use of a method to assess the general health of vegetation | *J. Olson*

RP051 Eco SSLs and Other Lines of Evidence in Refinement of Chemicals of Concern for a Metals-Contaminated Site | *P. Fuchsman*

RP052 Critical Review of Lead and Mercury Ecological Benchmarks in Soil | *K. Cejas*

RP053 Evaluation of Risk to Terrestrial Ecological Receptors in Linear Corridors and the Influence of Toxicity Reference Value Selection | *T. Small*

Predictive Methods for Assessing Persistence, Bioaccumulation or Toxicity

Yunzhou Chai, Jennifer Rhoades

RP054 A bioenergetic/bioaccumulation model for persistent organic pollutants in aquatic and terrestrial food webs | *Y. Fan*

RP055 Effects of Landscape Factors on Mercury and Methylmercury Contamination and Bioaccumulation in East Fork Poplar Creek Watershed, Tennessee | *S. Adelanke*

RP056 Evaluating the Role of UV Exposure and Recovery in PAH Phototoxicity | *J. Gnau*

RP057 Joint Toxicity of bifenthrin and Headline AMP® Active Ingredients to the Amphipod *Hyalella azteca* | *W. Mimbs*

Track

Aquatic Toxicology and Ecology

Integrated Env Assessment and Management

Environmental or Analytical Chemistry

Linking Science and Social Issues

Thursday Poster Presentations

RP058 MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development | *M. Barron*

RP059 Predicting Abraham Parameters From Molecular Structure Using a Quantum Chemical Method | *D. Di Toro*

RP060 Predictive approaches for assessing the environmental safety of industrial chemicals | *Y. Chai*

RP061 Screening chemicals used in hydraulic fracturing for aerobic and anaerobic biodegradation potential | *M. Kawa*

RP062 Using Web-based Interspecies Correlation Estimation (Web-ICE) models as a tool for acute toxicity prediction | *M. Willming*

RP063 Validation of a calculation method for molecular size to estimate the bioaccumulation potential | *C. Miyata*

Solution-Focused Risk Assessment

John Toll, Marc Greenberg

RP064 A Case Study Linking Pesticide Application at Local Scales to Population-Level Assessment Endpoints for an Endangered Songbird | *D. Dishman*

RP065 Conceptual Framework for Trait-Based Ecological Risk Assessment for Wildlife Populations Exposed to Pesticides | *J. Awkerman*

RP066 Water quality criteria and priority setting of typical toxic pollutants in China: Method and a case study of Lake Chaohu | *W. Wu*

Assessing the Potential for Multi-Ion Toxicity

Paul Paquin, Kevin Brix, Charles Delos, Rasa Bubnyte

RP067 A Preliminary Assessment of Sulfate Aquatic Life Criteria | *J. Justice*

RP068 Ceriodaphnia response to dissolved ions in pulp and paper mill effluents | *C. Flinders*

RP069 Chronic toxicity of NaCl and NaHCO₃ salts in binary mixtures can be described using additive toxic unit model | *A. Redman*

RP070 Comparison of Field-based Methods for Estimating the Annual Maximum Specific Conductivity Tolerated by Freshwater Invertebrates | *C. Flaherty*

RP071 Saline wastewaters from oil development in the Bakken Shale region; toxicity to daphnids and aquatic macrophytes in hard, simulated background waters | *A. Farag*

RP072 The chronic toxicity of multi-ion exposures to fathead minnows (*Pimephales promelas*) | *K. Johnson*

RP073 Total Dissolved Solids Toxicity: Full-Scale Solutions | *R. Lockwood*

RP074 Toxicity of desalination brine of varying ionic compositions on embryonic development of Japanese medaka (*Oryzias latipes*) | *A. Kupsco*

Improving Environmental Risk Assessment and Management by Applying Mechanism-Based Effect Models | *Annemette Palmqvist, Valery Forbes*

RP075 A bioenergetic modeling framework to understand effects of anthropogenic stressors on interacting aquatic species | *A. East*

RP076 Adverse outcome pathway assessment for a series of model toxicants | *K. Gillies*

RP077 Assessing the risk of adverse reproductive effects on threatened and endangered birds from exposure to pesticides using MCnest | *M. Etterson*

RP078 Ecological relevance in PERA: a DEB-IBM approach | *O. Price*

RP079 Exploring the effects of temperature and resource limitation on mercury bioaccumulation in *Fundulus heteroclitus* using dynamic energy budget modeling | *B. Clark*

RP080 Modeling combined effects of exposure to nickel and global warming: from individual energy budgets to ecosystem processing | *N. Galic*

RP081 Scaling the sublethal effects of methylmercury to yellow perch population dynamics using adverse outcome pathway framework | *C. Murphy*

RP082 Scaling up from an individual to a population-level assessment for risks of pesticides to threatened and endangered birds | *A. Kanarek*

RP083 The Terrestrial Investigation Model: a probabilistic risk assessment model for birds exposed to pesticides | *K. Garber*

RP084 Using mechanistic effect models in regulatory risk assessments – experiences from a modeler's perspective | *M. Meli*

"Omic" Technologies and Their Real-World Applications | *Adam Biales, Doris E. Vidal-Dorsch*

RP085 Auto Regressive Moving Average Model Represents High Dimensional Toxicogenomic Data and Improves Clustering Performance | *S. Rahman*

RP086 Diversity of sediment microbial community in response to acid mine drainage pollution in the Hengshi River (Southeast China) | *S. Tang*

RP087 Ecotoxicoproteomic approach to biomarker assessment in *Crassostrea brasiliensis* exposed to diesel fuel water-accommodated fraction (WAF) | *G. Muller*

RP088 Gene prediction in the fathead minnow (*Pimephales promelas*) genome | *T. Saari*

RP089 Investigating the potential use of frog skin microbiomes to monitor endocrine disrupting compounds | *T. Van Rossum*

RP090 Lipidomic analysis of eicosanoids in adipose tissue of pansteatitis-affected Mozambique Tilapia from Loskop Dam, South Africa | *T. Cantu*

RP091 Metagenomics analysis of microbial communities potentially involved in natural copper depletion at a proposed Northern Canadian mine site | *H. Osachoff*

RP092 Pathway-Based Points of Departure in Zebrafish Embryos to Identify Adverse Outcomes for Hazard Screening | *K. Gust*

RP093 Responses of Early Life Stage Exposure in Madaka to 1,2,5,6-Tetrabromocyclooctane (TBCO) on Transcriptome Level and Proteome Level | *J. Sun*

RP094 Toxic Detection by Portable Kit Based on Lysosomal Enzymes in *Saccharomyces cerevisiae* | *N. Nguyen*

RP095 Understanding the effects and mode of action of emerging contaminants (Benzotriazoles) using RNA-sequencing in *Daphnia magna* | *M. Houdé*

RP096 Using decision tree to classify trace metal on the basis of SELDI-TOF MS data of mayfly egg, *Ephemera orientalis* | *H. Mo*

LCA Lessons Learned from Case Studies

David Meyer, Annie Weisbrod, Susan Csiszar

RP097 Quantifying the use-phase impact of chemicals in flooring materials | *L. Huang*

RP098 Case Study - Life Cycle Assessment of Soy Protein Isolate | *A. Berardy*

RP099 Life Cycle Environmental Impacts of Grass-fed Beef Production in the Northeastern US | *N. Tichenor*

RP100 Life Cycle Assessment for Dredged Sediment Placement Strategies | *C. Fox-Lent*

Environmental or Analytical Chemistry General - Part 3

RP101 A strategic screening approach to identify micropollutants and transformation products appearing along rivers | *Z. Li*

RP102 Chemical characterization of indoor dust by comprehensive target and non-target screening using GC-QTOF-MS and LC-QTOF-MS | *C. Moschet*

RP103 Chronic exposure to acrylamide may produce tumors in the thyroids of rats by molecular pathways other than direct genotoxicity | *N. Denslow*

RP104 Contamination profiles of trace elements in sediments of Savannah River Estuary, Savannah, Georgia, USA | *K. Sajwan*

RP105 Evaluation of modeling approaches to describe marine natural organic matter binding with copper | *K. Croteau*

RP106 Investigating 134Cs and 137Cs levels in abiotic and biotic samples from British Columbia, Canada, following the Fukushima Nuclear Accident | *T. Domingo*

RP107 Screening Crude Oil-Polluted Water for Endocrine Activity | *C. Clark*

RP108 The Influence of Alternating Wetting and Drying on the Nutritional Quality of Rice Grain | *S. Røthenberg*

RP109 The InFORM project: An effort to determine the impact of the Fukushima disaster on Canada's oceans and residents | *J. Cullen*

Aquatic Toxicology and Ecology General - Part 4 | Scott Belanger

RP110 Assessing aquatic toxicity and risks for compounds whose toxicity is based on multiple modes of toxicity – using para-nonylphenol as an example | *C. Staples*

RP111 Characterization of toxicity pathways of 2,3,7,8-TCDD, PCB 77, and benzo[a]pyrene in white sturgeon using whole transcriptome and proteome analyses | *J. Doering*

RP112 Comparing the Effects of PBDEs on Reproductive and Thyroid Function in Adult and Early Life Stage Fathead Minnows | *L. Thornton*

RP113 Crafting a Gene Expression Timeline for the Thyroid in the Early-Life Stages of Fathead Minnows (*Pimephales promelas*) | *E. Randolph*

RP114 Determining the Effects of Bisphenol A (BPA) on Reproduction in *Caenorhabditis elegans* | *T. Gray*

RP115 Developmental toxicity and endocrine disrupting properties of tris(2-butoxyethyl) phosphate (TBOEP) in zebrafish embryos/larvae | *H. Liu*

RP116 Effects of cyclooxygenase inhibitor ibuprofen on prostaglandin synthesis and reproductive behavior in zebrafish | *J. Feely*

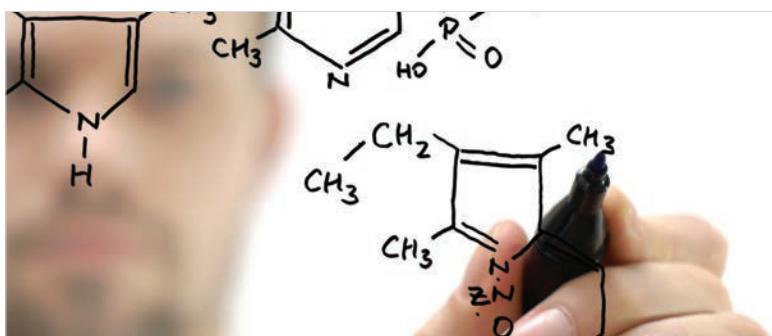
RP117 Embryo Toxicity of Japanese Medaka (*Oryzias latipes*) through the Retinoic Acid Signaling Pathway | *M. Overturf*

RP118 Environmental gestagens: Exposure effects on the fathead minnow from receptor activation to altered reproductive biology | *E. Orlando*

RP119 Genetic basis for evolved tolerance to dioxin-like pollutants in wild Atlantic killifish: more than the aryl hydrocarbon receptor | *D. Nacci*

RP120 Gonadal intersex in smallmouth bass *Micropterus dolomieu* in northern Indiana: prevalence, severity, molecular biomarkers and novel screening methods | *A. Abdelmoneim*

RP121 Identification of potential biomarkers in the freshwater snail *Physa acuta* in response to bisphenol A (BPA) exposure | *J. Martinez-Guitarte*


RP122 Impacts of PPCPs on brain and spinal gonadotropin releasing hormone neuron growth and proliferation using a transgenic zebrafish expressing GnRH3 | *J. Crago*

RP123 Identification of Tricosan Specific Biomarkers from *Daphnia magna* based on Proteomic Analysis | *H. Shin*

Poster Presentations

RP124 Multivariate Regression Analysis of Atlantic Bottlenose Dolphin Body Burden Contaminants | *M. Cains*
RP125 Mutagenic and toxicological results from Ukrainian Surface Waters | *K. Ho*
RP126 Nitrate- and Estrogen-induced Endocrine Disruption in the Fathead Minnow (Pimephales promelas) | *A. Moore*
RP127 Optimizing a LC-MS/MS-Based Phosphoproteomic Pipeline for the Identification of Signaling Pathways Activated by Chemical Exposure in Aquatic Species | *L. Smith*
RP128 Perchlorate and Thyroid Hormone Modulates Arsenite-Induced Oxidative Stress | *C. Theodorakis*
RP129 Screening potential biomarkers of Lead (II) acetate trihydrate and Atrazine based on Daphnia magna proteomic analysis | *V. Le*
RP130 Sequencing and expression of CYP1A, vitellogenin and metallothionein of *Gambusia* spp. inhabiting tropical karstic water bodies | *G. Rodriguez-Fuentes*

RP131 Short-term, *in vivo* screening method for detecting chemicals with juvenile hormone activity using adult *Daphnia magna* | *R. Abe*
RP132 The effects of salinity and dissolved oxygen on biomarkers of estrogen exposure in male fathead minnows, *Pimephales promelas* | *D. Feifarek*
RP133 The effects of select pharmaceuticals on swim bladder inflation of Japanese medaka (*Oryzias latipes*) embryos | *Z. Pandelides*
RP134 The effects of thyroid hormones and thyroid hormone disruptors on chemosensation in North American bullfrog (*Lithobates catesbeianus*) tadpoles | *J. Heerema*
RP135 The induction of P-glycoprotein-mediated xenobiotic efflux activity alters ivermectin and emamectin benzoate neurotoxicity in rainbow trout | *C. Kennedy*
RP136 *In vitro* Assessment of Androgenic Activity of Water Reclamation Plant Effluents in Greater Chicago | *A. Lukowicz*
RP142 The effects of citalopram on hybrid striped bass brain chemistry and predatory behavior | *Lauren Stocynski*

Solving our clients' most persistent challenges.

Ecological Risk Assessment

Human Health Risk Assessment

Global Product Stewardship

Ecosystem Sciences & Restoration

Natural Resource Damage Assessment

Water/Wastewater Solutions

Contaminated Sediment Management

Sustainability Solutions

28,000 employees in more than 300 offices worldwide.

More than 4,750 U.S.-based scientists and engineers.

Providing innovative approaches to the most challenging scientific problems.

www.arcadis.com

Aquatic Toxicology
and Ecology

Integrated Env Assessment
and Management

Environmental or
Analytical Chemistry

Linking Science and
Social Issues

The global need for GLP-compliant environmental testing continues to grow. So do we.

We've added capacity to better serve you.

For more than 35 years, Wildlife International has been a recognized leader in high-tier ecotoxicology and environmental fate testing services. We help agrochemical, industrial chemical, pharmaceutical, biotechnology and animal health companies meet global regulatory requirements for testing the safety, toxicology and environmental impact of their products. As global demand for scientific excellence continues to grow, so do we... with new capabilities and expanded capacity to better serve you.

Our new 29,000 facility in Easton, Maryland opened in the summer of 2015.

Our combined capabilities include:

- The full suite of fresh water and marine aquatic tests
- Endocrine disruptor screening and testing with in-house histopathology
- Bioaccumulation testing through aquatic and dietary exposure
- Avian toxicology testing
- Terrestrial and aquatic plants testing
- Honey bee and earthworm testing
- Environmental Fate and Metabolism
- Biodegradation Testing
- Animal and Plant Metabolism
- Residue Analysis
- Analytical Method Development

Please contact us to learn how the quality, innovation and service we provide can help you meet your goals.

Our Bruker maXis impact UHR-TOF

Wildlife International is part of the EAG family of companies. Together with PTRL West, PTRL Europe and ABC Laboratories, we offer a full suite of environmental testing services in support of new product development, registration and re-registration, data call-ins, and compliance with EDSP, REACH and other global regulations.

WATERBORNE
ENVIRONMENTAL

Valuable ways we're serving our clients:

- Human health, ecological and endangered species risk assessments
- Ecotoxicology, e-fate and toxicological study management
- Chemical registration assistance for GHS, REACH, etc.
- Down-the-drain and water quality monitoring studies
- Dossier, white paper and publication preparation
- Nutrient and chemical exposure modeling
- Population and habitat modeling
- Non-clinical toxicology support
- Pollen and nectar studies
- Chemical emission estimates
- Mobile apps for field data collection
- Geospatial, data and statistical analysis

VISIT
WATERBORNE
AT BOOTH
901

OUR EXPERTISE

endocrine disruption support

environmental stewardship

water quality

pollinator protection

threatened and endangered species

product safety

study management

client strategy

MARKETS

crop protection

agriculture & food

veterinary medicines

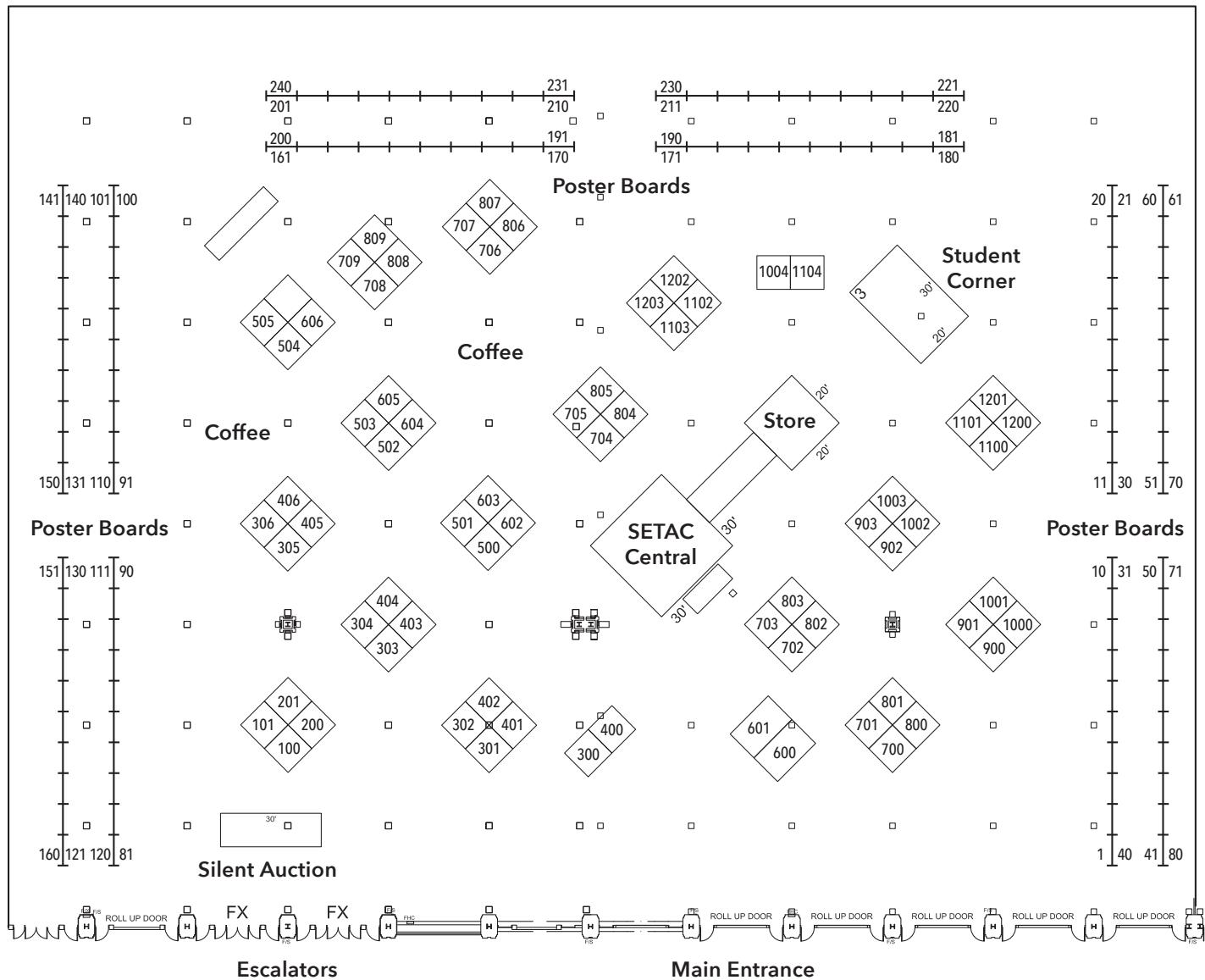
water & wastewater assessment

industrial & speciality chemicals

biocides & antimicrobials

human pharmaceuticals

home & personal care products


We're always thinking ahead to tomorrow's challenges.
Let us help you to address yours.

BALANCING THE NEEDS OF A GROWING POPULATION WITH THE QUALITY OF OUR
MOST PRECIOUS NATURAL RESOURCES TAKES SOUND SCIENCE, DEEP COMMITMENT,
AND A CONSTANT CURRENT OF INGENUITY.

www.waterborne-env.com

info@waterborne-env.com

+1.703.777.0005

SETAC North America Regional Chapters

Booth Schedule | Booth 709

Monday, 2 November	Tuesday, 3 November	Wednesday, 4 November
9 a.m.-11 a.m. Ozark-Prairie and Pacific Northwest	9 a.m.-11 a.m. Carolinas and South Central	9 a.m.-11 a.m. Midwest
11 a.m.-1 p.m. Rocky Mountain	-----	11 a.m.-1 p.m. Chesapeake-Potomac
1 p.m.-3 p.m. Southeast	1 p.m.-3 p.m. Hudson-Delaware	1 p.m.-3 p.m. Mid South
4 p.m.-5 p.m. Northern California	3 p.m.-5 p.m. Prairie Northern	3 p.m.-5 p.m. Southern California

EXHIBITORS

Booth	Exhibitor	Booth	Exhibitor
500/602	ABC Laboratories	405	GHD
603	ACZ Laboratories, Inc.	803	Great Lakes Environmental Center, Inc. (GLEC)
800	ADPEN Laboratories, Inc.	100	Horizon Technology, Inc.
201	AECOM	1101	iChrom Solutions
707	Agilent Technologies, Inc.	1004	LGC Standards
902	ALS Environmental	1000	Loligo Systems
708	American Board of Toxicology, Inc.	404	Maxxam Analytics
705	Aquatic BioSystems, Inc.	1200	National Library of Medicine
301/401	Arcadis	606	Omni International
302	Axys Analytical Services Ltd.	505	PerkinElmer
804	Battelle	807	Postnova Analytics
305	Baylor University, Environmental Science	303	Ramboll ENVIRON
1002	Brooks Rand Instruments	709	SETAC Regional Chapters
200	C.I.Agent Stormwater•Solutions	502	Simulations Plus, Inc.
605	Cambridge Isotope Laboratories, Inc.	600/601	Smithers Viscient
704	Cardno	806	Springer
1202	ChemAxon	1104	Symbiotic Research LLC
402	Compliance Services International	801	SynTech Research
306/406	CRC Press- Taylor & Francis Group, LLC	1102/1103	TDI-Brooks International
304	CytoViva, Inc.	706	Teledyne Leeman Labs
607	Diapharma Group, Inc.	702	Tetra Tech, Inc.
604	EA Engineering, Science, and Technology, Inc.	900	Thermo Scientific
1203	EcoAnalysts, Inc.	808	ToxPlanet
1100	Envigo	1001	ToxStrategies
501	Environmental Sampling Technologies, Inc.	700/701	US Environmental Protection Agency
403	EPL, Inc.	101	Vista Analytical Laboratory
805	Eurofins Scientific	901	Waterborne Environmental, Inc.
903	Exponent, Inc.	1003	Wellington Laboratories Inc.
503	FMS, Inc.	802	WIL Research
703	Frigid Units, Inc.	300/400	Wildlife International, a Division of EAG, Inc.
504	GEI Consultants, Inc.	1201	Wiley

ACZ Laboratories, Inc.

A Full Service Environmental Testing Laboratory

Visit us at booth #603

Company

- Founded in 1980
- Certified Small Business
- Experienced Project Management Staff
- Serving Domestic and International Clients

Laboratory

- NELAC Accredited
- 31,000 Square Foot Facility
- Class 100 Cleanroom
- Designed for Efficiency, Sample Security and Data Integrity

Capabilities

Inorganic

Organic

Radio-Chemistry

Geo-Chemistry

Biota

Specialty

Industry Experience

Mining

Oil/Gas, & Energy

Government

RCRA

sales@acz.com

(800) 334-5493

acz.com

AECOM

Creating Innovative Strategies

AECOM's integrated human health and ecological risk network manages risk using innovative technical strategies and lessons learned from our broad experience base.

CONTACT

Ceil Mancini
Global/US Risk Lead, Remediation DCS Group
ceil.mancini@aecom.com

ABC Laboratories | 500/602

Amy Mize

4780 Discovery Drive | Columbia, MO 65202 USA
T 800 538 5227

Established in 1968, ABC Laboratories supports new product development, registration and re-registration initiatives with GLP-compliant ecotoxicology, plant and animal metabolism, field and laboratory environmental fate, radiolabeling and analytical testing services. Talk to us about pharmaceutical environmental assessments, the Endocrine Disruptor Screening Program and REACH compliance!

ACZ Laboratories, Inc. | 603

Michael McDonough

2773 Downhill Drive | Steamboat Springs, CO 80487 USA | T 970 879 6590 | E michaelm@acz.com

ACZ Laboratories, Inc. is a full-service analytical environmental testing laboratory with inorganic, organic and radiochemical capabilities, specializing in the analysis of trace level contaminants in water, soil, sediment, sludge, waste, plant and biota tissue. ACZ operates out of a 31,000 square-foot facility in Steamboat Springs, Colorado.

ADPEN Laboratories, Inc. | 800

Steven Perez

11757 Central Parkway | Jacksonville, FL 32224 USA
T (904) 645-9169 | E sp@adpen.com

ADPEN Laboratories Inc. is a leading, independent, R&D analytical laboratory. ADPEN provides advanced analytical services in the pharmaceutical, biotech, cosmetics, nutraceutical, food safety, food and nutritional products, agrochemical and animal health industries world-wide. Our analytical research lab is registered with the USFDA and USEPA, and it has been inspected by these two agencies.

AECOM | 201

Ceil Mancini

625 West Ridge Pike, Suite E-100 | Conshohocken, PA 19428 USA | T 610 832 3500 | E ceil.mancini@aecom.com

AECOM is a fully integrated engineering and environmental services firm with a global remediation network that includes 150 risk professionals in more than 150 countries throughout the world. AECOM scientists and engineers work on strategic remedial planning, design, and long-term monitoring projects that are based on sound risk-based remedial decision-making.

Agilent Technologies, Inc. | 707

Alonzo Brown

2850 Centerville Road | Wilmington, DE 19808 USA
T 800 227 9770 | E agilent_inquiries@agilent.com

Agilent Technologies is a leading provider of sample preparation, chromatography, mass spectrometry, elemental analysis, molecular spectroscopy, and laboratory information systems as well as support services, columns and consumables that enable you to analyze, confirm and quantify substances of interest with confidence from sample preparation to final report. Learn more www.agilent.com/chem/environmental.

ALS Environmental | 902

Gregory Salata

1317 S 13th Avenue | Kelso, WA 98626 USA
T 360 577 7222 | E Gregory.Salata@alsglobal.com

ALS Environmental is one of the world's largest and most advanced analytical testing providers. Our expertise encompasses the analyses of air, water, biological and solid samples. Our services are tailored to meet the individual needs of our clients while providing high-quality, cost-effective and timely analytical data.

American Board of Toxicology, Inc. | 708

Susie Masten

P.O. Box 97786 | Raleigh, NC 27624 USA
T 919 841 5022 | E info@abtox.org

ABT was founded to establish a process for certification which would evaluate and document competency in the field of toxicology. ABT's purposes are to encourage the study of toxicology, to stimulate its advancement by establishing standards for professional practice, to prepare and administer procedures including tests for the implementation of such standards, and to confer recognition upon those members of the profession who, measured against such standards, demonstrate competence.

Aquatic BioSystems, Inc. | 705

Scott Kellman

1300 Blue Spruce Drive, Suite C | Fort Collins, CO 80524
USA | T 800 331 5916 | E srk@aquaticbiosystems.com

Aquatic BioSystems, Inc. (ABS) is a full-service organism culturing facility specializing in the production and distribution of freshwater and marine organisms for aquatic toxicology and aquatic research. ABS supports the organism requirement of laboratories, municipalities and corporations nationwide and internationally. I-service organism

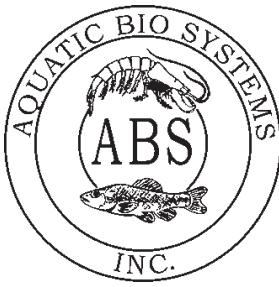
ALS Laboratory Testing Services

- Low-level Tissue & Sediment Experts
- Research & Development
- Laboratories across North America
- Client-Focused

Contact us today!
Gregory.Salata@alsglobal.com
Howard.Boorse@alsglobal.com

BOOTH 902.

www.alsglobal.com


American Board of Toxicology Inc.

Certification for competency
in the field of toxicology.

To learn more about certification with the ABT, please come by **booth 708**.

BOOTH 708 www.abtox.org

Aquatic BioSystems, Inc.

**Quality Research
Organisms**

Booth 705

Aquatic BioSystems, Inc.
1300 Blue Spruce Drive #C
Fort Collins, CO 80524

**800-331-5916
970-484-5091**

www.aquaticbiosystems.com

Product List

Fathead Minnows
Sheepshead Minnows
Mysid Shrimp
Inland Silverside
Topsmelt
Lumbriculus sp.
Hyalella azteca
Chironomus dilutus
Leptocheirus sp.
Ceriodaphnia dubia
Daphnia magna
Daphnia pulex
R. subcapitata
YTC Daphnid Feed
Mixture
Marine Rotifers

LOOKING FOR SOLUTIONS
TO YOUR ENVIRONMENTAL
CHALLENGES?

RELY ON BATTELLE.

Offering specialized expertise in the areas of:

- Natural Resource Assessment & Monitoring
- Air Quality & Regulatory Compliance
- Water Systems & Water Infrastructure Management
- Environmental Remediation
- Geologic Characterization, Storage, and Modeling
- Analytical Lab Services

www.battelle.org/environment

Battelle
The Business of Innovation

OFFERING DISTINCT RESEARCH CAPABILITIES IN...

**GLOBAL SCOPE
GLOBAL IMPACT**
ENVIRONMENTAL
SCIENCE

BAYLOR
UNIVERSITY

- WATER QUALITY
- CHEMICAL TRANSPORT
- MESOCOSM TESTING
- NANOMATERIALS
- AIR QUALITY
- GENOTOXICITY
- MODELING
- ECOLOGICAL HEALTH
- HUMAN HEALTH
- NOVEL EXPOSURE ASSESSMENT

POSITIONS AVAILABLE FOR FACULTY, POSTDOCTORAL
SCIENTISTS & GRADUATE STUDENTS!

COME VISIT US AT BOOTH #305

**Introducing
The All New
MERX-II**

**BROOKS
RAND**
INSTRUMENTS

**THE NEXT GENERATION OF
MODULAR MERCURY ANALYZERS
For US EPA Methods 1630, 1631 & 245.7**

+1-206-596-8477 | brooksrandinc.com | bri@brooksrandinc.com

Arcadis | 301/401**Tim Iannuzzi**

630 Plaza Drive Suite 200 | Highlands Ranch, CO 80129
USA | **T** 443 699 6369 | **E** Tim.Iannuzzi@arcadis-us.com

Arcadis is a leading global consulting firm specializing in innovative environmental management and remediation techniques. With more than 300 offices worldwide, we have broad-based expertise in risk assessment, toxicology, epidemiology, ecology, chemistry, product stewardship, modeling and statistical analysis. We provide the strategies that deliver exceptional and sustainable results for our clients' environmental challenges.

Axys Analytical Services Ltd. | 302

2045 Mills Road West | Sidney, BC V8L 5X2 Canada
T 888 373 0881 | **E** analytical@axys.com

AXYS: Leader in ultra-trace analysis for emerging contaminants and POPs. We offer consultant, industry and government clients specialized analysis and method development for contaminants of emerging concern (pharmaceuticals, personal care products, per/polyfluorinateds, Parent/Alkylated PAHs) and POPs (PCB, D_x/F). Capitalizing on analytical expertise and experience in tissue and biofluid matrices, AXYS now offers ISO17025 targeted metabolomic analyses, offering clients deeper understanding of exposure-response relationships.

Battelle | 804**Gregory Durell**

141 Longwater Drive, Ste 202 | Norwell, MA 02061 USA
T 781 681 5517 | **E** durell@battelle.org

Each and every day, at major technology centers and national laboratories around the world, Battelle delivers critical environmental solutions and services to government and commercial clients, including cutting-edge research and development. We are a leader in providing science-based, innovative environmental assessment, remediation and management solutions.

Baylor University, Environmental Science | 305**Sascha Usenko**

One Bear Place, #97266 | Waco, TX 76798 USA
T 254 710 3405 | **E** Sascha_Usenko@Baylor.edu

Baylor University's Department of Environmental Science performs basic and applied research to address environmental challenges as integral aspects of graduate education. We produce scientific leaders through interdisciplinary science with a purpose. Current award-winning foci include: Water Quality & Aquatic Toxicology, Environmental Chemistry, Risk Assessment, Atmospheric Science and Genotoxicity.

C.L.A.M.

Continuous Low-Level Aquatic Monitoring

- In-Situ Continuous Field Extraction
- Quantitative Results for Trace Organics, Pesticides, Herbicides, TPH, PAHs CECs, etc.
- Up to 100 Liter Extractions provide Ultra-Low Detection Limits
- Runs on 4 AA Lithium Batteries
- No coolers or sample bottles
- Disk Media Housing combines glass prefilters with EPA Approved Solid Phase Extraction Media
- Will take the lab to the field and leave the water behind

A Division of C.I.Agent Storm-Water Solutions

www.ciagent-stormwater.com

Cambridge Isotope
Laboratories, Inc.
isotope.com

Solutions for a greener world

Standards for Environmental, Food, Water, and Exposure Analysis

Cambridge Isotope Laboratories, Inc., is pleased to introduce its latest catalog featuring new products for environmental, food, water, and exposure analysis. This catalog includes isotopically labeled and unlabeled standards for investigation of legacy and emerging POPs, such as dioxins, PCBs, PCNs, PAHs, pesticides, PFCs, flame retardants, and much more.

Visit us in
Booth #605!

Order a copy
of our new
catalog today!

Scan the QR code to access
our online order form.

Cambridge Isotope Laboratories, Inc.

+1.978.749.8000 | 1.800.322.1174 (No. America only)
envsales@isotope.com | isotope.com

Yes, we pioneer approaches used in human health & ecological risk assessment. But we do so much **more**.

NATURAL RESOURCE DAMAGE ASSESSMENTS
WATER RESOURCES AND HABITAT RESTORATION
NEPA COMPLIANCE AND PERMITTING
TSCA COMPLIANCE SERVICES

 Cardno[®]
Shaping the Future

Stop by
Booth #704
cardno.com

MANAGE YOUR CHEMICAL DATA & COLLABORATE WITH CHEMAXON

- You can rely on our industry leader chemistry for physchem calculations (logP, logD, solubility etc)
- Manage all your chemical data with our Microsoft Office add-on, where structures are editable, they are not just images
- Open a virtual research meeting room for designing a new structure with Marvin Live
- Share, manage, search and analyse your data in our web-based Plexus Suite

 ChemAxon
DISCOVERY INFORMATICS

Brooks Rand Instruments | 1002

Colin Davies

4415 6th Avenue NW | Seattle, WA 98107 USA
T 206 596 8477 | E sales@brooksrandinc.com

Brooks Rand Instruments designs, manufactures and sells the most sensitive and advanced mercury analysis and speciation systems available for USEPA Methods 1630, 1631 and 245.7. With decades of real-world mercury analysis experience, we provide our customers with an unparalleled level of service and technical support.

C.I.Agent Stormwater•Solutions | 200

Brent Hepner

11760 Commonwealth Drive | Louisville, KY 40299 USA
T 866 242 4368 | E brent@ciagent.com

The C.L.A.M. is a small submersible SPE extractive sampler that extracts water in situ through SPE media disks. The sampling event is continuous for up to 36 hours and can represent up to one hundred liters of water. The C.L.A.M. takes the lab to the field and leaves the water behind.

Cambridge Isotope Laboratories, Inc. | 605

Ben Priest

3 Highwood Drive | Tewksbury, MA 01876 USA
T 978 749 8000 | E envsales@isotope.com

CIL, a Guide 34 and ISO 17025 standards manufacturer, offers high-quality analytical standards for analysis of pesticides, POPs, PPCPs, flame retardants, dioxins/furans, PCBs and other pollutants. Using isotopically labeled standards in GC/MS and LC/MS applications is the best way to ensure quantitative accuracy in environmental analysis. Visit us at Booth #605.

Cardno | 704

5415 SW Westgate Drive, Suite 100
Portland, OR 97221 USA | T 503 233 3608

Cardno is a global leader in professional infrastructure and environmental services with expertise in environmental toxicology, environmental chemistry and data sciences, ecological and human risk assessment, natural resource economics, natural resource damages, and environmental business analytics. Our teams deliver customized consulting solutions to meet our client's greatest challenges.

ChemAxon | 1202**Janos Fejervari**

Záhony utca 7 | 1031 Budapest, Hungary
T + 36 1 453 0435 | **E** jfejervari@chemaxon.com

ChemAxon is a leading cheminformatics company, with headquarter in Budapest, Hungary, and offices in the US. We provide cheminformatics software platforms, applications and services to optimize the value of chemistry information in life science and other R&D. We have strong support on academic research and teaching, which is unique in the industry.

Compliance Services International | 402**Jeremiah Wilson**

7501 Bridgeport Way West | Lakewood, WA 98499 USA
T 253 473 9007 | **E** JWilson@complianceservices.com

Specialists in Regulatory & Scientific Consulting! Compliance Services International (CSI) specializes in global regulatory and scientific consulting services for product registration and risk assessment. Our services include USA and EU regulatory affairs, ecological risk assessment, endangered species analysis, endocrine disruptor evaluation, REACH chemical safety assessment, exposure modeling, study monitoring and data development, litigation support, information management systems and task force management. Serving industry since 1988 with offices in the USA and the UK.

CRC Press - Taylor & Francis Group, LLC | 306/406**Joe Clements**

6000 Broken Sound Pkwy NW, Suite 300
 Boca Raton, FL 33487 USA | **T** 561 361 6000
E Joseph.Clements@taylorandfrancis.com

CRC Press - Taylor & Francis Group is a premier publisher of books and electronic databases in the field of environmental toxicology and chemistry. Visit our booth and view our latest publications and take advantage of special show offers and raffles. For more information, visit www.crcpress.com.

CytoViva, Inc. | 304**Sam Lawrence**

570 Devall Drive, Suite 301 | Auburn, AL 36832 USA
T 334 737 3100

CytoViva's technology combines patented, enhanced darkfield optical microscopy with high resolution hyperspectral imaging. These integrated technologies were specifically designed to enable optical observation and spectral characterization of label free nano-materials as they interact with biological and other materials-based matrixes. No fluorescent labeling or other sample prep is required to optically observe or spectrally characterize nano-materials in these complex environments.

CytoViva®

Illuminating the Future

CytoViva's technology combines patented, enhanced darkfield optical microscopy with high resolution hyperspectral imaging. These integrated technologies were specifically designed to enable optical observation and spectral characterization of label free nano-materials as they interact with biological and other materials-based matrixes. No fluorescent labeling or other sample prep is required to optically observe or spectrally characterize nano-materials in these complex environments.

EA
**EA Engineering, Science,
 and Technology, Inc., PBC**

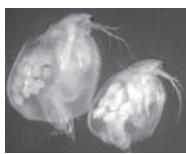
- **Ecotoxicology Laboratory**
- **Environmental Solutions**
- **Natural Resources**
- **Compliance Management**
- **Infrastructure Engineering**

**www.eaest.com
 Offices Nationwide**

TAXONOMIC SERVICES

WWW.ECOANALYSTS.COM

BENTHIC INVERTEBRATES


10 full time invertebrate taxonomists with 28 SFS certifications
7000+ Samples processed annually

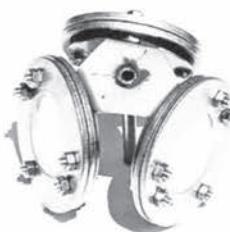
ALGAE

Periphyton & Phytoplankton
Diatoms • Soft Body
2000+ Samples processed annually

ZOOPLANKTON

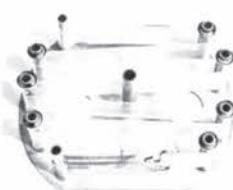
1000+ Samples processed annually

ICHTHYOPLANKTON


Larval Fish, Eggs, and Fish Stomach Content Analysis
500+ Samples processed annually

EcoAnalysts is North America's leading provider of services supporting the assessment of surface waters using biological communities.

(208) 882-2588


Moscow, ID • Washington, DC
Vancouver, BC

ECOANALYSTS, INC.
LIFE IN WATER

POCIS

For POLAR compounds

SPMD

For NON-POLAR

PASSIVE SAMPLING DEVICES TO COVER THE ENTIRE SPECTRUM OF BIO-AVAILABLE CONTAMINANTS

Custom SPMDs
GPC cleanup
Deployment devices-rental or sales
Consulting

www.est-lab.com

Booth # 501

Diapharma Group, Inc. | 607

Jennifer Kiblinger

8948 Beckett Road | West Chester, OH 45069 USA
T 800 526 5224 | E info@diapharma.com

Diapharma supplies the TECO® Cyprinid Vitellogenin ELISA for Serum, Whole Body Homogenate & Mucus, and the TECO® Perch (Perciformes) Vitellogenin ELISA for Serum & Mucus. Also visit us to discuss Cytokeratin 18 biomarkers and antibodies for cell death detection, whether caused by drugs, toxins or disease. For research use only.

EA Engineering, Science, and Technology, Inc. | 604

Melissa Smith

225 Schilling Circle, Ste 400 | Hunt Valley, MD 21031 USA
T 410 329 5116 | E masmith@eaest.com

EA is a 100% ESOP-owned public-benefit corporation that provides environmental, compliance, natural resources and infrastructure engineering and management solutions. In business for more than 42 years, EA employs more than 400 professionals through a network of 24 commercial offices. For more information about EA, visit www.eaest.com.

EcoAnalysts, Inc | 1203

Kaylani Merrill

1420 S Blaine Street, Suite 14 | Moscow, ID 83843 USA
T 208 310 1396 | E kmerrill@ecoanalysts.com

EcoAnalysts is a leader in the bioassessment industry. We provide high-quality data, have high capacity for large numbers of samples and provide excellent client support. Our team comprises highly qualified professionals with outstanding reputations in the fields of freshwater and marine ecology, taxonomy, impacts assessment and statistical analyses.

Envigo | 1100

100 Mettlers Road | East Millstone, NJ 08875-2360 USA
T 732 873 2550 | E sales@princeton.huntingdon.com

Envigo, one of the world's leading providers of non-clinical research products and services, is dedicated to helping our customers in the chemical and crop protection industries achieve the potential of their products and enhance life through the development of new products, greater food production and a safer environment.

Environmental Sampling Technologies, Inc. | 501

Terri L Spencer

502 South 5th Street | Saint Joseph, MO 64501 USA
T 816 232 8860 | E spmd_est@sbcglobal.net

Long before there was the iPhone, Cronuts or even Viagra, there was Environmental Sampling Technologies, Inc. – manufacturing and marketing the SPMD for non-polar contaminants in air, water and soil, and the POCIS for polar compounds in water. EST also sells or rents stainless steel deployment canisters for our samplers and can assist you to plan your passive sampling project. Satisfaction guaranteed or double your contamination back.

EPL, Inc. | 403

Jeffrey C. Wolf

45600 Terminal Drive | Sterling, VA 20166 USA
T 703 471 7060 | E jwolf@epl-inc.com

EPL has vast expertise in the histologic processing and pathologic evaluation of a variety of aquatic animal and avian species, including laboratory fish, amphibians, and birds used for toxicologic testing, and wild animals collected to evaluate the effects of xenobiotics in natural waterways. EPL has been at the forefront of endocrine disruption research for more than 20 years.

Eurofins Scientific | 805

Michele Castro

2200 Rittenhouse St, Ste 175 | Des Moines, IA 50321 USA
T 949 870 8766 | E michelecastro@eurofinsus.com

Eurofins is a leading international group of laboratories with more than 15,000 employees in 37 countries, providing an unparalleled range of testing and support services to the environmental, pharmaceutical, food, and consumer products industries and government agencies. Our expertise encompasses all environmental matrices including, air, groundwater, marine sediment, soil, solid waste and wastewater.

Exponent, Inc. | 903

Susan Kane Driscoll

1 Clock Tower Place, Ste 150 | Maynard, MA 01754 USA
T 978 461 4606 | E sdriscoll@exponent.com

Exponent is a leading engineering and scientific consulting firm, providing solutions to complex technical problems. Our multidisciplinary team of scientists, physicians, engineers and regulatory consultants performs in-depth scientific research and analysis and rapid-response evaluations to provide our clients with the critical information that both day-to-day and strategic decisions can require.

Environment Testing

AIR

SOIL

WATER

SEDIMENT

MARINE CHEMISTRY

Providing Expert Analytical Services

Marine Chemistry

Michele Castro – Eurofins Calscience Inc.
Direct: 949.870.8766 Lab: 714 895-5494
MicheleCastro@eurofinsUS.com

Trace Metals and Metals Speciation

Robert Brunette – Eurofins Frontier Global Sciences Inc.
Direct: 206.660.7307 Lab: 425.686.1966
RobertBrunette@eurofinsUS.com

www.eurofinsus.com/environment-testing

Exponent[®]

Exponent's Ecological and Biological Sciences, Environmental and Earth Sciences, and Health Sciences practices embody a large, diverse and well integrated team of scientists, engineers, and physicians. These practices offer technical, regulatory, and litigation support to industries that include energy, manufacturing, mining and metallurgy, petrochemicals, forest products, shipbuilding, and railroads, along with trade associations and law firms. With a full-time staff of more than 900 located in 20 U.S. and 5 international offices, Exponent's scientists and engineers help our clients solve complex and challenging problems.

Our services include:

- Natural resource damage assessment (NRDA) and restoration consulting
- Environmental forensics (PCBs, PAHs, chlorinated solvents, dioxins and furans, and metals) and dose reconstruction
- Ecological and human health risk assessment
- Health and epidemiology
- Air, groundwater, surface water, and sediment transport modeling
- Site characterization
- Remediation optimization
- Cost allocation
- Failure analysis

Exponent is certified to ISO 9001 and is authorized by the General Services Administration (GSA) to provide professional engineering services.

888.656.EXPO www.exponent.com

FMS, Inc. | 503

580 Pleasant Street | Watertown, MA 02472 USA
 T 617 393 2396 | E onlineinfo@fms-inc.com

FMS designs, manufactures and supports analytical instruments used by scientists to perform extraction, cleanup, fractionation and concentration of samples prior to chemical analysis. Industries that rely on our sample preparation systems are: agricultural, chemical, clinical, coatings, cosmetics, energy, environmental, flavors, food, life science. Pharmaceutical, petrochemical, tobacco, toxicology and utilities.

Frigid Units, Inc. | 703

Dawn Heilman
 5072 Lewis Avenue | Toledo, OH 43612 USA
 T 419 478 4000 | E frigidunits@toast.net

Frigid Units manufactures fiberglass tanks and Water Chiller/Heater Units, including our "Living Stream," which cools, aerates and filters in one operation. Patented items: Stream Modules for a continuous flow of water in limited space and Chiller/Heater Units with dual thermostat. Also, the flexibility to manufacture to special needs.

GEI Consultants, Inc. | 504

Kelly Cohane
 4601 DTC Boulevard, Suite 900 | Denver CO 80237 USA
 T 781 721 4000 | E KCohane@geiconsultants.com

GEI's ecological services include design, implementation, and management of water quality and biological studies for a variety of water bodies from small streams to large lakes and reservoirs. Our staff also offers expertise in evaluating risks to aquatic and terrestrial life. We provide regulatory support, ecological and human health risk assessments, environmental litigation support, TMDL evaluations, CERCLA/Superfund studies, remedial investigations, Natural Resource Damage Assessments and biological monitoring. Our in-house laboratory provides research-level aquatic toxicity testing and nutrient and biological sample analysis.

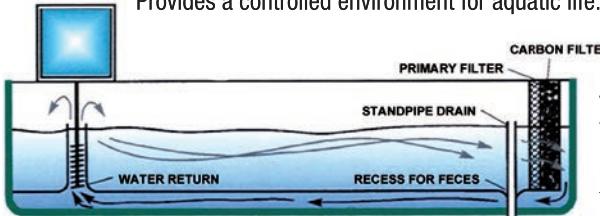
Tanks, Chiller Units and The "Living Stream" System

WATER CHILLER UNITS

Cool, aerate & circulate in one operation (heating optional).

RECTANGULAR TANKS

available in various sizes or custom built to your requirements


CIRCULAR TANKS

Available in various sizes from 3' to 8' diameters. Insulated or non-insulated depending on your temperature requirements.

The "LIVING STREAM" System

Provides a controlled environment for aquatic life.

The Living Stream is a revolutionary design of recirculating water in a closed system. All the water in the insulated tank makes a complete cycle every 1-1/2 minutes, thus providing an equal amount of dissolved oxygen and the desired temperature throughout the entire tank.

frigid units, inc.

5072 Lewis Ave. Toledo, OH 43612
 Phone: 419.478.4000
 Fax: 419.478.4019
www.frigidunits.com

GHD | 405

Jennifer Martinez

1755 Wittington Place, Ste 500 | Dallas, Texas 75234 USA
T 972 331 8500 | **E** Jennifer.Martinez@ghd.com

GHD is one of the world's leading professional services companies operating in the global markets of water, energy and resources, environment, property and buildings, and transportation. Committed to creating lasting community benefit, our connected global network of 8,500 people delivers engineering, environmental and construction services to public and private sector clients across five continents - Asia, Australia, Europe, North and South America - and the Pacific region. www.ghd.com.

Great Lakes Environmental Center, Inc. (GLEC) | 803

Dennis J. McCauley

739 Hastings Street | Traverse City, MI 49686 USA
T 231 941 2230

Great Lakes Environmental Center, Inc. (GLEC) has provided government and industry with services in applied water quality and environmental sciences, problem solving and research throughout the US since 1992. GLEC has extensive laboratory and field resources and capabilities in aquatic toxicology, environmental assessments, environmental management and compliance, and technical services. Contact us at www.glec.com.

Horizon Technology, Inc. | 100

Zoe Grosser

16 Northwestern Drive | Salem, NH 03079 USA
T 603 893 3663 | **E** spe@horizontechinc.com

Horizon Technology is a leader in automated sample preparation systems for the analysis of semivolatile organic compounds. We offer both disk and cartridge-based extraction automation for a wide variety of applications including clinical, toxicology, food and beverage, and more. Extract drying and evaporation complete the offering. Come see our proven systems and talk about making your lab more efficient.

iChrom Solutions | 1101

John Crutchfield

Doubletree Center #376, 816 N Delsea Drive | Glassboro, NJ 08028 USA | **T** 609 799 7250 | **E** John.Crutchfield@iChrom.com

iChrom Solutions provides innovative solutions to solve challenging sample preparation problems. We focus on maximizing your laboratory's potential by integrating sample preparation into the analytical process. From LC to LC/MS to GC/MS, our products allow more samples to be done in less time with less solvents, faster, easier and less expensive.

Ecological Consulting Services

Toxicology and Risk Assessment	Assessments
Water Quality Standard and Criteria Development	Threatened and Endangered Species Surveys
In-House Aquatic Toxicology Laboratory	Habitat Assessments and Management Plans
Aquatic and Terrestrial Biomonitoring	Total Maximum Daily Load (TMDL) Evaluation and Development
Environmental Permitting and Compliance	Environmental Impact Statements
Habitat Restoration Design, Construction, and Oversight	Bioengineering
Wetland Delineations and	Native Plant and Seed Installation

Offices Nationwide
www.geiconsultants.com

We are excited to speak at SETAC

Come hear our presentations and visit our booth #405

www.ghd.com

Great Lakes Environmental Center, Inc.

Environmental Management and Compliance
Technical Services
Environmental Assessment
Laboratory and Field Services

GLEC is an equal opportunity employer. All qualified applicants will receive consideration for employment without regard to their protected veteran status or disability. In addition, GLEC does not discriminate against individuals based on their race, color, religion, sex, or national origin.

Automate for Better Results

Automated SPE Improves Your Research: Flexibility • Efficiency • Analysis Results

Horizon Technology provides automated system solutions to increase laboratory workflow - from solid phase extraction (SPE) to drying, evaporation/concentration and solvent recovery systems.

Automate your sample prep work flow and *prepare for better results!*

For more info contact sales@horizontechinc.com or visit us at www.horizontechinc.com • +1 603.893.3663

SETAC North America
36th Annual Meeting

ARACUS
BY MEMBRAPURE

AUTOMATED
AMINO ACID ANALYZER

Amino Acid analysis -
Easy, Economical,
Accurate

Visit us at Booth 1101

iChrom
SOLUTIONS

Doubletree Center Suite 376
816 N Delsea Drive
Glassboro, NJ 08028
609-799-7250

ADVANCED FIXED
ONLINE SPE SYSTEM
BY SPARK HOLLAND
*economical ONLINE SPE
for even the most
stringent budgets!*

LGC Standards | 1004**Don Hobbs**

276 Abby Road | Manchester, NH 03063 USA
T 603 206 0799 | **E** lgcusa@lgcstandards.com

LGC Standards is a manufacturer of high-quality CRMs and reference materials. Our CRMs include those for pesticides, contaminants, dyes, veterinary drugs, nutritional and organic materials. Our food matrix reference standards include those for dairy, chocolate, fish and meat. We provide proficiency testing programs for the food industry.

Loligo Systems | 1000**Jannik Herskin**

Niels Pedersens Allé 2 | 8830 Tjele, Denmark
T + 45 8999 2545 | **E** mail@loligosystems.com

Loligo® Systems offer scientific equipment for measuring respiration and behavior in aquatic organisms. Products are respirometry systems and chambers for measuring oxygen consumption, swim tunnels for exercise and critical swimming speed, video tracking and behavior analysis software, shuttle and choice tanks for preference/avoidance tests, and instrumentation for monitoring/controlling water quality.

Maxxam Analytics | 404**Joshua Dias**

4606 Canada Way | Burnaby, BC V5G 1K5 Canada
T 800 665 8566 | **E** exotox@maxxam.ca

For more than 30 years, our ecotoxicology team has provided analytical chemistry characterization services and performed routine and custom analyses for environmental studies, industrial process development and product improvement. Maxxam offers analytical services designed to support safety evaluation and monitoring of chemicals, contaminants, industrial effluents and determination of the environmental effects of these factors.

National Library of Medicine | 1200**Pertti (Bert) Hakkinen**


T 888 Find NLM | **E** tehip@teh.nlm.nih.gov

The National Library of Medicine provides FREE internet access to environmental health information at tox.nlm.nih.gov. Resources include the TOXNET® databases; Haz-Map® database; Tox Town®, a guide to toxic chemicals and environmental health; Household Products Database, a guide to everyday products; and TOXMAP® US maps, showing environmental release of toxic chemicals.

Reference Standards for residue and environmental testing**Neats, solutions and mixes for:**

- Pesticides
- Contaminants
- Dyes
- Veterinary drugs and more

Stop by Booth 1004 to learn more

www.lgcstandards.com Science for a safer world

LGC Quality - ISO Guide 34 • GMP/GLP • ISO 9001 • ISO/IEC 17025 • ISO/IEC 17043

©LGC Limited 2015. All rights reserved. LGC Standards is part of the LGC Group.

HIGH THROUGH-PUT RESPIRATION ASSAY FOR SMALL AQUATIC ORGANISMS

Loligo® Systems

Use this multi channel system for measuring oxygen consumption inside 250-750 µL gas tight glass chambers for small aquatic organisms like daphnia or crustacean/fish larvae, embryos, eggs etc.

KEY FEATURES

- Dual reference optical fluorescence O₂ sensing technology
- Real-time O₂ monitoring in each independent chamber
- Non-invasive & non-destructive measurements
- Reusable pre-calibrated oxygen sensor spots
- Experimental temperature control (5-40 °C)
- Daisy-chain multiple readers

www.loligosystems.com

U.S. National Library of Medicine

Environmental Health & Toxicology Information

Booth 1200

Bead Ruptor 4

MINI BEAD MILL HOMOGENIZER

***Powerful performance
in a compact design***

- > Homogenize up to 4 samples in seconds
- > Wide selection of beads & tubes for ultimate versatility
- > Reproducible extraction of proteins and nucleic acids

www.omni-inc.com

800.776.4431

770.421.0058

Environmental Analysis
and Instruments
for Testing
Air
Water
Soil
Waste

Visit Us in Booth #505
to Learn More

Omni International | 606

935C Cobb Place Boulevard | Kennesaw, GA 30144 USA
T 770 421 0058 | E Sales@omni-inc.com

Omni International, Inc. is a leading global manufacturer and distributor of laboratory homogenizers. Since 1956, the name Omni has been synonymous with laboratory homogenizers. Referenced in over 10,000 peer-reviewed scientific articles, Omni International homogenizers can be found in laboratories worldwide and are counted on for years of trouble-free operation.

PerkinElmer | 505

Customer Care

940 Winter Street | Waltham, MA 02451 USA
T 203 925 4602 | E CustomerCareUS@perkinelmer.com

PerkinElmer, Inc. is focused on improving the health and safety of people and their environment. PerkinElmer is dedicated to the quality and sustainability of the environment. With our analytical instrumentation, illumination and detection technologies, and leading laboratory services, we focus on improving the integrity and safety of the world.

Postnova Analytics | 807

Trevor Havard

230 S 500 E, Ste 120 | Salt Lake City, UT 84102 USA
T 801 521 2004 | E info@postnova.com

Postnova Analytics is the inventor of Field Flow Fractionation (FFF) instruments for nanoparticle, protein, bio/polymer separation, fractionation and characterization. Field-Flow Fractionation, coupled to Multi-Angle Light scattering (MALS), Dynamic Light Scattering (DLS) and ICP-MS detection, offers access to high-resolution size and molar mass separation, characterization and element specification.

Ramboll ENVIRON | 303

Scott Hall

201 Summit View Dr, Ste 300 | Brentwood, TN 37027 USA
T 615 277 7512 | E shall@environcorp.com

A premier global consultancy, Ramboll ENVIRON is trusted by clients to manage their most challenging environmental, health and social issues. We have earned a reputation for technical and scientific excellence, innovation and client service. Our independent science-first approach ensures that our strategic advice is objective and defensible. We apply integrated multidisciplinary services and tailor each solution to our client's specific needs and challenges.

The FFF - MALS Platform

Next Level Nano, Bio and Polymer Analysis

 POSTNOVA
Leading in FFF

Contact us for more information: www.postnova.com

**SUSTAINABLE
SOLUTIONS TO
ECOLOGICAL
CHALLENGES
(WITH
UNMATCHED
CLIENT SERVICE)**

Proud sponsor of the SETAC
North America 36th Annual Meeting

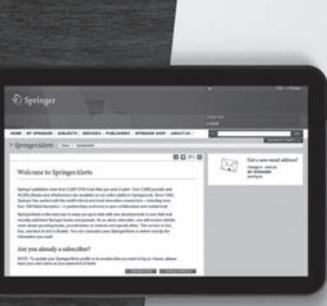
Simulations Plus
C O G N I G E N
Science. Software. Success.

Wouldn't it be nice to reduce animal testing?

Predict potential ADME-Tox outcomes and toxic dose levels - **before in vivo experiments** - with our best-in-class QSAR and PBPK software programs.

GastroPlus™ ADMET Predictor™ DDDPlus™
MedChem Studio™ MedChem Designer™

Visit us at booth #502 to learn more about our modeling and simulation software and consulting services.



Simulations Plus
C O G N I G E N
Science. Software. Success.

42505 10th Street West • Lancaster, CA 93534 • USA • phone: +1-661-723-7793
fax: +1-661-723-5524 • email: info@simulations-plus.com • www.simulations-plus.com

Springer

springer.com

Sign up for SpringerAlerts

The best way to keep you up-to-date with new developments in your field!

- Table of Contents Alerts for Journals
- Table of Contents Alerts for Book Series
- New Book Alert

[Sign Up Today](#)

springer.com/alerts

Simulations Plus, Inc. | 502

Michael Lawless

42505 10th Street West | Lancaster, CA 93534 USA
T 661 723 7723 | E info@simulations-plus.com

Simulations Plus' ADMET Design Suite provides an unprecedented capability to data mine compound libraries, design new molecules and virtually screen structures for >150 ADMET properties. GastroPlus sets the standard for PBPK/PD modeling for different administration routes, population simulations and DDI. DDDPlus and MembranePlus offer mechanistic simulations of in vitro dissolution and permeability experiments.

Smithers Viscient | 600/601

Deb Teixeira

790 Main Street | Wareham, MA 02571 USA
T 508 295 2550 | E info@smithersviscient.com

Smithers Viscient is a global Contract Research Organization (CRO) providing environmental testing, toxicology and regulatory services for the crop protection, pharmaceutical, industrial chemical and consumer product industries. Smithers Viscient has performed standard guideline and higher-tiered environmental studies for more than 45 years. We conduct studies to satisfy all regulatory requirements globally.

Springer | 806

Melinda Paul

233 Spring Street | New York, NY 10013 USA
T 781 347 1835 | E Melinda.paul@springer.com

Get hands-on experience with Springer's multi-format publishing model: print - eBook - MyCopy. Come browse our books in your preferred format: print, online, or on an eReader or iPad. Ensure optimized print and electronic dissemination of your work, too! Get Read. Publish With Springer.

Symbiotic Research LLC | 1104

350 Clark Drive | Mount Olive, NJ 07828 USA
T 973 426 9900 | E info@symbioticresearch.net

Symbiotic Research is a one-stop shop CRO for your metabolism and E-fate research needs. We are a full GLP facility, inspected by USEPA and NRC-NJDEP. Our team is adept in designing and implementing strategies to meet our customers' needs and time frames, while maintaining high-quality standards.

Expert services
delivering competitive
advantage

Visit us at
SETAC North
America
stand number
801

Worldwide services to agricultural businesses

Getting crop protection and crop production products to market requires specialist expertise.

The SynTech Research range of agrochemical and seeds research, development and registration services will help you get your products positioned and registered fast.

With a presence in 29 countries, SynTech Research is a global leader in contract research for crop protection and production.

SynTech® Research

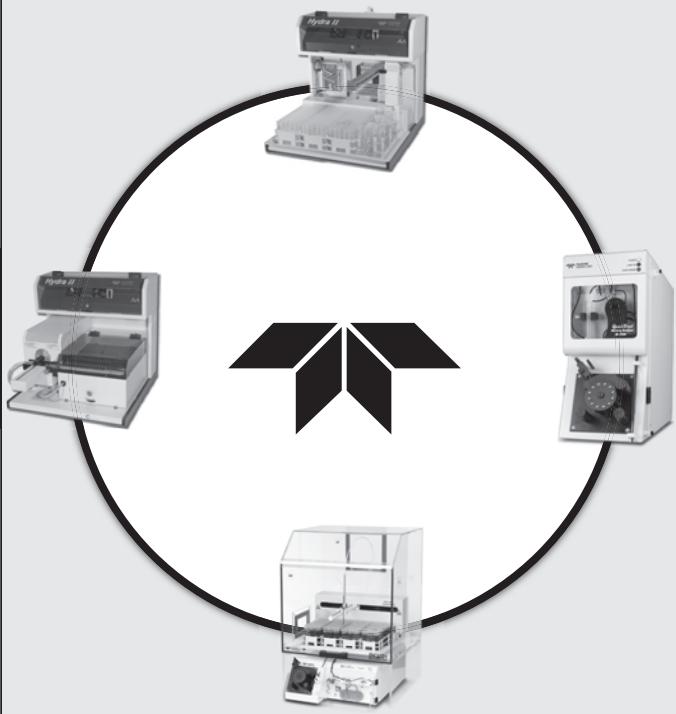
www.syntechresearch.com

We are a One-Stop Shop CRO for your metabolism and E-Fate research needs. We are a full GLP facility, inspected by US-EPA and NRC-NJDEP.

Visit us at Booth #1104
www.SymbioticResearch.com
350 Clark Drive, Mount Olive, NJ 07828
info@symbioticresearch.net

TDI-Brooks International

Providing scientific services on a global basis


- Multi-disciplinary environmental assessments
- Environmental chemistry / laboratories
- Petroleum geochemistry / laboratories
- Oil spill response
- Research vessel charter
- Oceanographic, metocean, site and seabed surveys

14391 South Dowling
College Station, Texas 77845, USA
Mr. Juan Ramirez
juannramirez@tdi-bi.com
979-693-5446

www.tdi-bi.com

Teledyne Leeman Labs Hg Analyzer Family

For more information, visit
<http://info.teledyneleemanlabs.com/mercury>

 TELEDYNE LEEMAN LABS
Everywhereyoulook™

SynTech Research | 801

Eric Ythier

17745 South Metcalf Avenue | Stilwell, KS 66085 USA
 T 913 378 0998 | E eythier@syntechresearch.com

SynTech Research provides expert R&D and registration services for agrochemical, seeds and biocide businesses. We operate in 29 territories and across a wide range of targets worldwide, conducting field and laboratory studies on bio-efficacy and environmental safety, including terrestrial, aquatic and avian eco-toxicology, residues and analytical services, operating to GLP/GEP.

TDI-Brooks International | 1102/1103

Juan Ramirez

14391 S Dowling Road | College Station, TX 77845 USA
 T 979 693 3446 | E Juanramirez@tdi-bi.com

Scientific services with a focus on environmental chemistry, environmental assessments, petroleum geochemistry, surface geochemical exploration, geotechnical coring and analysis, oil spill response, oceanographic surveys, hazard/seismic surveys, geophysical survey services; chartering and management of four research vessels and laboratory facilities; available for third party vessels with equipment and technical personnel.

Teledyne Leeman Labs | 706

Deborah Jordan

110 Lowell Road | Hudson, NH 03051 USA
 T 603 886 8400 | E LeemanLabsinfo@teledyne.com

Teledyne Leeman Labs is a manufacturer of analytical instrumentation for elemental analysis including Inductively Coupled Plasma (ICP) Spectrometers, Mercury Analyzers including Cold Vapor Atomic Absorption (CVAA), Cold Vapor Atomic Fluorescence (CVAF) and Atomic Absorption with Thermal Decomposition for solid sample analysis.

Tetra Tech, Inc. | 702

Jerry Diamond

10711 Red Run Blvd, Ste 105 | Owings Mills, MD 21117 USA
 T 410 356 8993 | E Jerry.Diamond@tetrtech.com

Tetra Tech provides regulatory program support for federal, state and local agency clients. Services include the development of biological/toxicological tools for developing site-specific criteria and designated uses, state-of-the-art water quality modeling and watershed management, TMDLs, and innovative pollution controls and BMPs for nonpoint source pollution (including stormwater protection plans).

TETRATECH

SETAC 2015 Key Service Areas

Ecology

Bioassessment • Biocriteria Development • Ecological Risk Assessment/Data Analysis
 ESAs/Fisheries Ecology/Fish Tissue Analysis • Indicator Development/Stressor Identification
 Monitoring Design • Watershed Assessment

Toxicology

NPDES Toxicity Testing/WET Training • Site-specific Criteria Development
 Water Effect Ratio Studies • Histopathology
 Monitoring Design • Watershed Assessment

Quality Assurance

Laboratory Audits • Quality Assurance Plan Development QA/QC Training

Communication/Outreach

Ecotoxicology Workshops • Risk Communication Symposium/Workshop Facilitation

Restoration/Mitigation

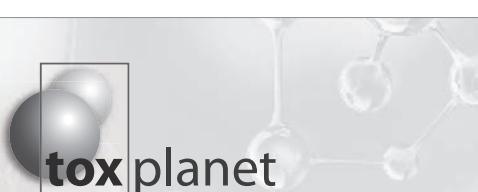
Habitat Assessment/Restoration • TMDLs • UAs • Water Quality Modeling

Complex World, Clear Solutions
www.tetrattech.com

Thermo Scientific | 900

5225 Verona Road | Madison, WI 53711 USA
T 800 532 4752 | **E** analyze@thermofisher.com

Thermo Scientific is the leading brand of total laboratory solutions for the life sciences industries. Our offerings include chromatography and mass spectrometry products covering chemical analysis and a range of dedicated air quality and water analysis solutions with guaranteed support to meet your analysis needs.


ToxPlanet | 808

Matt Timberlake
PO Box 1603 | Cornelius, NC 28031 USA
T 704-896-7499 | **E** mtimberlake@toxplanet.com

ToxPlanet offers highly specialized web-based decision-support products designed to meet the information needs of product stewards, toxicologists, industrial hygienists and other chemical safety professionals responsible for managing the impact of chemicals in the workplace or on the environment. Try us out and discover why thousands of professionals use our products.

Identification. Quantification. Confirmation

- Automated Sample Prep
- GC, HPLC, UHPLC, IC
- Single Quadrupoles
- Triple Stage Quadrupoles
- Ion Traps
- Customized Software
- PAHs/PCBs
- Pesticides
- PPCPs
- Perfluorinated Compounds
- POPs
- Endocrine Disruptors
- High Resolution Accurate Mass

**Information Solutions
for the World of Toxicology**

ToxPlanet offers highly specialized web-based decision-support products designed to meet the information needs of product stewards, toxicologists, industrial hygienists, and other chemical safety professionals.

ToxPlanet invites you to enjoy a no-obligation **Free Trial Subscription**. There's no better way to experience the difference ToxPlanet can make on the job.

Contact us today at sales@toxplanet.com or visit our website to learn more at www.toxplanet.com

Toll-Free (USA & Canada): (855) TOX-DATA (869-3282)

ToxStrategies

Innovative Solutions
Sound Science

ToxStrategies is a multidisciplinary scientific consulting firm specializing in the evaluation of potential health risks associated with exposures to chemicals in occupational settings, environmental media, consumer products, foods, pharmaceuticals, and medical devices. Our team of health scientists, engineers, regulatory specialists, epidemiologists, and bio-statisticians are recognized as leaders in their respective disciplines.

www.toxstrategies.com

EPA Research

Innovation in Chemical Evaluation

Cutting-edge science to address the impacts of existing chemicals, anticipate impacts of new chemicals, and evaluate complex interactions of chemical and biological systems to better protect human health and the environment.

Visit EPA's booth for hands-on demonstrations of online tools developed to transform chemical evaluation and inform ecological risk assessments.

chemical safety for sustainability

www.epa.gov/research

ToxStrategies | 1001

Alea Goodmanson

9390 Research Blvd, Ste 100 | Austin, TX 78759 USA
T 512 537 3896 | E agoodmanson@toxstrategies.com

ToxStrategies is a multidisciplinary scientific consulting firm that strives to develop innovative solutions to address the scientific, technical and regulatory challenges confronting our clients. We have a reputation for applying sound science in all that we do and for tailoring our approach to meet the specific needs of our clients.

US Environmental Protection Agency 700/701

Monica Linnenbrink

109 TW Alexander Drive | Durham, NC 27709 USA
T 919 541 1522 | E Linnenbrink.monica@epa.gov

The US Environmental Protection Agency relies on advances in science to pursue the agency's mission of protecting human health and the environment. The agency's safer chemicals research leads the development of innovative science to support safer, more sustainable use of chemicals in consumer products and chemicals used for other purposes such as pesticides. Using safer, more sustainable chemicals will help to better protect human and environmental health, including sensitive populations like children, elderly and endangered species.

Vista Analytical Laboratory | 101

Jennifer Miller

1104 Windfield Way | El Dorado Hills, CA 95762 USA
T 916 673 1520 | E jmiller@vista-analytical.com

Since 1990, Vista (formerly Alta Analytical) has been providing analytical support to projects requiring trace-level organic analysis, generally driven by risk assessment - both human and ecological. Our laboratory utilizes high-resolution GCMS and LC-MS/MS technology to analyze for Congener-specific PCBs, dioxins/furans, PAHs, pesticides, PBDEs, perfluoroalkyl and polyfluoroalkyl substances (PFAS) and pharmaceuticals and personal care products (PPCPs), in most matrices.

Waterborne Environmental, Inc. | 901

Chris Holmes

897B Harrison Street SE | Leesburg, Virginia 20175 USA
T 703 777 0005 | E info@waterborne-env.com

Waterborne is a full-service risk assessment consulting company, providing innovative solutions to complex environmental challenges. Waterborne applies risk assessment expertise across a wide range of markets, including agriculture and crop protection, home and personal care products, human and veterinary pharmaceuticals, biocides and antimicrobials, and industrial and specialty chemicals.

Vista
Analytical Laboratory

Providing specialized High Resolution
GCMS and Ultra Performance
LCMS/MS services

Dioxins/Furans, PCB Congeners, PAHs,
Pesticides, PBDEs, PPCPs and PFCs

Soil, sediment, water, tissue, air and waste

Experience. Expertise. Accurate Results.

Consult with Vista and understand the
difference.

916.673.1520
www.Vista-Analytical.com

WELLINGTON LABORATORIES

SETAC NA 2015
Salt Lake City, Utah

STANDARDS FOR ENVIRONMENTAL
TESTING & RESEARCH

You have our FULL ATTENTION.

So let's talk about **environmental toxicology and chemistry**.

With WIL Research on your team, you can take advantage of more than 1,300 experts and 64,000 square meters of laboratory space located throughout North America and Europe. No matter what type of study you are seeking, we have the experience, expertise and cooperative approach needed to get the job done right.

Visit us at booth 802

www.wilresearch.com

WIL RESEARCH

We have **listening** down to a **science**.

Wellington Laboratories Inc. | 1003**Nicole Riddell**

345 Southgate Drive | Guelph, ON N1G 3M5 Canada
T 519 822 2436 | **E** nicole@well-labs.com

We produce certified reference standards for halogenated persistent organic pollutants. Our native and isotopically labelled contaminant standards are invaluable to analytical chemists and toxicologists working on environmental issues. We have individual compound standards and mixed analyte solutions to support most published analytical methods. Our inventory includes PCDD/PCDF, PCB, PFC, BFR and PAH solutions.

WIL Research | 802

1407 George Road | Ashland, OH 44805 USA
T 419 289 8700 | **E** info@wilresearch.com

WIL Research is a global CRO dedicated to listening to customer needs. We custom design product safety toxicological research, bioanalytical and formulation services for pharmaceutical, biotechnology, chemical, agrochemical and food companies. With approximately 1,200 scientific, technical and support personnel located throughout the world, WIL Research offers technological expertise, flexible study design and quality results.

**Wildlife International, a Division of EAG, Inc.
300/400****David Palmer**

8598 Commerce Drive | Easton, MD 21601 USA
T 410 822 8600

Wildlife International has been a recognized leader in higher-tier ecotoxicology and environmental fate testing for more than 35 years. We offer a full suite of environmental testing services in support of new product development, registration and re-registration, data call-ins and compliance with EDSP, REACH and other global regulations.

Wiley | 1201**Hannah Smith**

111 River St - Mail Stop 8-039K | Hoboken, NJ 07030 USA | **T** 201 748 7668 | **E** hansmith@wiley.com

Wiley is the proud publisher of SETAC's journals, Environmental Toxicology and Chemistry and Integrated Environmental Assessment and Management. In partnership with societies all over the world, Wiley's Research segment provides scientific, technical, medical and scholarly journals, reference works, books and database services. For more information, visit us at www.wiley.com.

AUTHOR INDEX

A Abara, Priscilla TP036
 Abdelmoneim, Ahmed RP120
 Abdollahi, Atousa 264
 Abduljabbar, Mai MP002
 Abe, Chika MP106
 Abe, Ryoko 608, RP131
 Abe, Tatsuo MP106
 Abedin, Shaikha 8
 Abernathy, Macon WP022
 Abi-Akar, Farah 682
 Abrantes, Nelson MP142
 Abrell, Leif 508
 Achten, Wouter 476
 Ackerman, Josh 239, 240, 241, 242
 Adamovsky, Ondrej TP015
 Adams, Abby 296
 Adams, Kevin WP079
 Adams, Melanie TP134
 Adams, Valerie 509
 Adams, William 534, 596, 674, 675, 707, MP110, MP116, WP052
 Adelanke, Segunadelanke RP055
 Adewale, Benedette TP056
 Adnett, Judie TP133
 Adolfsson-Erici, Margaretha TP145
 Aepli, Christoph TP055
 Afanasyev, Sergey MP027
 Afanasyev, Sergey RP125
 Agee, Jennifer 238
 Agerstrand, Marlene 142, 684
 Aguilas, Angeles WP198
 Aguirre, Alonso TP097
 Ahad, Jason 404, WP157
 Ahmad, Farrukh WP145
 Ahrens, Lutz MP015
 Aiken, George TP071
 Airola, Daniel MP226
 Ajami, Nadim TP033
 Al-Rajudi, Tahreer MP002
 Al-Rouqi, Reem MP002
 Al-Saleh, Iman MP002
 Alali, Zainab TP198
 Alava, Juan Jose RP106
 Albanese, Katie 448
 Alcamo, Thomas 464
 Alegretti, Lucas MP177
 Alessi, Daniel WP007, WP008
 Alexander, Alexa WP155
 Alexander Trusia, Alexa TP111
 Alfaro-De La Torre, Ma Catalina MP041
 Algaoud, Rashed WP145
 Alharbi, Hattan WP158
 Ali, Afsar 287
 Ali, Jonathan 20, 449, MP030, TP065
 Alix, Anne 725
 Aljali, Sanaa TP039
 Allan, Kenneth MP123
 Allen, Joel TP014, TP174, TP181
 Allen, Richard MP034, MP035
 Allison, Jane 350
 Alloy, Matthew 308, 310, 313, TP191
 Almas, Sadia 335
 Almeda, Rodrigo 306
 Alnagar, Yahya WP067
 Alpers, Charles 236
 Alsaadi, Ftoon WP163
 Altenburger, Rolf 710
 Aluwihare, Lihini WP117
 Alvarez, David 114, 391, MP007, RP044, RP118
 Aly, Alaa MP109
 Amberg, Jon MP183
 Amos, Helen 617, 618
 Amos, Joshua 643, MP090, MP092, WP210, WP221
 An, Joon Geon MP193
 An, Lihui 398
 Anastas, Paul 367, 413
 Anders, Doris 504
 Anders, Merle RP108
 Andersen, Kim MP205
 Anderson, Brian 204, RP009, RP017
 Anderson, Chad MP089

Anderson, Jeff 127
 Anderson, Jordan 322
 Anderson, Julie 457, TP165
 Anderson, Kayce MP226
 Anderson, Kim 22, 165, 168, 262, 708, MP014, MP020, MP208, MP209, TP184, WP208
 Anderson, Kurt TP044
 Anderson, Kyler 640
 Anderson, Mark TP005
 Anderson, Paul 628
 Anderson, Todd 82, MP073, WP025, WP197
 Andersson, Hanna 485
 Andreone, Michael WP183
 Anghera, Shelly 619
 Anika, Silvanus MP230
 Ankley, Gerald 114, 116, 117, 361, 362, 396, 412, 567, 569, 571, 577, 701, MP026, MP028, MP038, MP172, TP087, TP186, WP102, RP088, RP113
 Annunziato, Kate WP038, WP039
 Antczak, Philipp 699
 Antunes, Paula 202
 Anyasi, Raymond Oriebe TP152
 Apitz, Sabine 725
 Apolonio-Barranca, Reynol WP030
 Appling, Yancey 648
 Appy, Elizabeth WP196
 Aquilino, Monica RP039
 Aragon, Lindie TP175
 Arblaster, Jennifer 466, 475, RP026, RP048
 Arcagni, Marina TP203
 Árcega-Cabrera, Flor MP190
 Archbold, Josephine 163, MP005
 Archer, Christine 222, 511
 Arciszewski, Tim 407
 Ardianovita, Caecilia WP130
 Arellano Aguilar, Omar TP135
 Arellano Lopez, Isidro TP046
 Arenal, Christine 719
 Arey, J. MP139
 Arias, Michelle 238
 Arick, Mark 366
 Ariesyady, Herto Dwi WP130
 Arini, Adeline MP046
 Ariyarathna, Thivanka 381, 382, WP018
 Arizono, Koji WP149
 Armbrust, Kevin MP206, RP012, RP013, WP048
 Armitage, James 525, 586, 616, WP089, WP090, WP132, WP133, WP135, WP136, WP138
 Arms, Matthew 619
 Armstrong, Brandon 465, MP046
 Arnold, Elyssa MP236
 Arnold, Scott TP131
 Arnot, Jon 84, 291, 525, 586, MP059, WP089, WP090, WP132, WP135, WP136, WP138
 Arribére, María TP203
 Arth, Peter 18, 612
 Arts, Gertie 89, 347
 Asante, Kwadwo Ansong MP188
 Ashauer, Roman 587, RP078
 Ashby, Liz 434
 Asimakopoulos, Alexandros 158, 159
 Asuzu, Uzoma MP230
 Atagana, Harrison TP152
 Atkins, Jackson MP187
 Atkinson, Arainn 714
 Atoloye, Idowu MP189
 Au, Sarah 250
 Aubee, Catherine 460
 Aubrey, Jillian WP140
 Aufderheide, John WP215
 Auffan, Mélanie TP106
 Augspurger, Thomas 10, 90, 697, TP094, TP192
 Aust, Nannett 706
 Ávila Pérez, Pedro WP030
 Awkerman, Jill 442, RP065

B Babica, Pavel TP015
 Babin, Patrick 366
 Bacha Ben Said, Sarah 418
 Back, Richard 342
 Badia-Fabregat, Marina 326
 Bael, David 351
 Bagatim, Tabata MP024, MP025, MP031
 Baghdikian, Christina 9
 Bahadori, Tina 9
 Bahmani, Mahmoud TP065
 Bailey, Frank 108, MP161, MP164, MP169
 Bainy, Afonso Celso Dias RP087
 Bajaj, Sanjeevan 390
 Baker, Joel 654
 Baker, Leah RP108
 Baker, Leanne 233, TP068
 Balaji Bhaskar, Maruthi Sridhar MP113
 Balakrishnan, Vimal WP186
 Balcazar, Jose Luis 326
 Baldwin, Austin 114, 245
 Baldwin, David 33, 130, 316
 Baldwin, William 578
 Balise, Victoria TP096
 Balistreri, Laurie 305, TP200
 Ballentine, Mark 381, 382, WP018
 Ballou, Kristopher RP104
 Balmer, Brian MP074
 Balthis, Len 203
 Baltz, Donald TP060
 Bamgbose, Ifeoluwa WP025, MP115
 Banan, Ashkan TP065
 Banda, Jo 113, 115, 602
 Bangma, Jackie MP070
 Banks, Cynthia 259
 Bannister, Raymond 579
 Baran, Nicole 369, TP104, TP108
 Barbee, Gary 99
 Barber, Angela 374
 Barber, Michael 8
 Barcelo, Damia 326, TP037
 Bard, Shannon MP180
 Bare, Jane 483
 Bare, Jennifer MP053
 Barefoot, Aldos MP087, MP090
 Bargar, Tim MP089, RP044
 Barghi, Mandana RP029, TP077, TP084
 Barker, Natalie 414, WP011, WP031, RP092
 Barnhart, Chris 610
 Barnthouse, Lawrence 447
 Barra, Ricardo MP224, MP239
 Barrera-Escorcia, Guadalupe TP139
 Barrett, Holly WP140
 Barrett, Kirk 261, 468
 Barrett, Sophie 498, WP159
 Barrett, Tim 407
 Barrios, Renys WP035
 Barron, Mace MP134, RP058, RP062, TP192
 Bartell, Steven 440, WP214
 Bartelt-Hunt, Shannon 449, MP030, WP035, WP047
 Bartlett, Adrienne WP160, WP166, WP186
 Bartlett, Jonathon 609
 Barton, Hannah WP040
 Barton, Michael MP208
 Barzen-Hanson, Krista 543, 659
 Basili, Danilo 699
 Bastidas Bonilla, Cecilia TP046, TP139
 Basu, Amrita TP015
 Basu, Nil MP046, TP094, RP081
 Bates, Josephine WP168, WP169
 Bates, Matthew RP100
 Batstone, Damien 552
 Bauer, Anthony 498, WP159
 Bauer, Candice TP192, TP215
 Baulch, Helen 437
 Baumann, Paul TP095
 Baun, Anders WP086
 Baxter, Leilan 353
 Bayer, Regina 464
 Bayha, Keith 214
 Beach, Evan 367
 Beale, Perry MP145

Beaman, Joseph TP003, WP124
 Bean, Thomas TP166
 Beasley, Amy 62
 Beasley, Val 283
 Beauchemin, Melissa WP010
 Beaujardin, Rob WP121
 Beaujieu, Jake TP014
 Bechard, Karen WP056
 Beck, Elizabeth WP183
 Becker, Jesse 243, MP081
 Becker Bertotto, Luísa WP203
 Beckerman, Bernard 25
 Bednar, Anthony 384, 504, WP012
 Bednarska, Agnieszka MP229
 Bedner, Mary 560
 Beedgen, Franziska 59
 Bégin, Christian WP157
 Begum, Shamim TP173
 Behra, Renata 494, 718
 Behsaz, Bahar 632
 Beihoffer, Jon 327, 702
 Beitel, Shawn 386, 389, WP105, WP107, MP185
 Bejarano, Adriana 203, 225, MP134
 Belanger, Scott 60, 61, 62, 741, MP129, MP133, MP166, TP209
 Belcher, Pam 13
 Belden, Jason 263, 420, 631, 680, MP009, RP057, TP136, TP201, WP013, WP014, WP074, WP098
 Belinga, Cynthia MP063
 Belisle, Marc 336
 Belknap, Andrew 639
 Bell, Shannon 408
 Bellenger, Jean-Philippe 336
 Bellona, Christopher 77
 Bencic, David 701, 705
 Benedetti, Marc 373
 Benetti, Daniel 307, 308
 Benner, Bruce MP192
 Benotti, Mark MP013
 Benskin, Jonathan 575
 Benson, William 284
 Bentivegna, Carolyn TP091, TP092, TP198
 Bentley, Kristen 121
 Berardy, Andrew RP098, MP210
 Berckmans, Pascale 61
 Bergmann, Alan 22, 165, TP184
 Bernadac-Villegas, Luis MP104
 Bernhard, Mary Jo 61, 294, TP113, TP115, TP116
 Bernhardt, Emily 489, 495
 Berninger, Jason 412, 569, WP192
 Bernot, Melody MP081
 Berny, Philippe 458
 Bertolo, Robert 341
 Bertram, Kyle 548
 Bertrand, Ashley TP055, RP079
 Bertsch, Sharon WP040
 Besley, John 143
 Bess, Amanda RP052, TP132
 Besser, John 201, 610
 Best, David 154, 155
 Bestvater, Lianna 450
 Betancourt, Pamela TP058
 Betowski, Don WP097
 Bevelhimer, Mark MP113
 Beyer-Robson, Janina MP182
 Beyger, Lindsay 322
 Bhattachari, Barun 393
 Biales, Adam 701, 705
 Bianchini, Adalto TP207
 Bianchini, Kristin 271, 546, MP043
 Biasutti-Brown, Marina 340
 Bicherel, Pascal MP132
 Bickerton, Greg WP159
 Bickham, John 357, 700
 Bidleman, Terry WP175, MP203
 Biedenbach, James TP059, TP121
 Bielmyer, Gretchen 52
 Biever, Ronald 122, MP036, MP160
 Bigorgne, Emilie 750
 Bilbo, Thomas WP197, TP212

Bilec, Melissa 652
 Bingman, Timothy TP147
 Binnington, Matthew 525, WP091
 Birol, Incanc 632
 Bischof, Ina 294, TP113, TP115, TP116
 Bischof, Matthew 40
 Biscesi, Joseph 287, MP095, MP097, MP100, MP102
 Bishop, Christine 44, 664, RP038
 Bishop, Lee MP082
 Bishop, Patricia 536, MP055
 Bissonnette, Martine 378, WP016
 Bittner, Chris 1, 2
 Bizzotto, Elisa 200, RP026
 Bjorkland, Rhema TP191
 Black, Marsha 185, 234
 Blackburn, Jason TP098
 Blacker, Ann 537
 Blackwell, Brett 114, 117, 362, MP172, TP186
 Blaha, Ludek 61, TP015
 Blaine, Andrea 655
 Blake, James 518
 Blalock, Bonnie 328
 Blanc, Ariel WP196
 Blancher, Eldon 226
 Blankinship, Amy 128, 131
 Blas, Susan TP205
 Blaustein, Kathy MP020
 Blazer, Vicki TP095
 Bleiler, John 222
 Blewett, Tamzin 51
 Blickley, Michelle WP215
 Blickley, Twyla WP066
 Bloom, Raanan 235
 Blount, Ben 97
 Blum, Peter TP018
 Blume, Louis TP150
 Blust, Ronny 585, 591, WP195
 Bocksch, Sigrun MP037
 Bodnar, Wanda 452
 Bogart, Sarah 302, 501
 Bogen, Kenneth 25, MP155, MP158
 Boggs, Ashley MP192
 Böhler, Svenja 59, MP130
 Bohlin Nizzetto, Pernilla 171
 Böhlke, John 82, 381, 382
 Boisvert, Gabriel TP040, MP068, MP071
 Boksch, Sigrun WP080
 Bolinius, Damien WP139
 Bolyard, Kasey WP188
 Bondarenko, Svetlana MP034, MP035
 Bonetto, Carlos 315
 Bonin, Adam RP052, TP132
 Bonnar, David MP088
 Bonnell, Mark WP089, WP138
 Bonnot, Shane 310, 313
 Bony, Sylvie 290
 Boone, Scott MP187
 Boos, Jason 609
 Booth, Clarissa MP202
 Booth, Pieter 725
 Borch, Thomas 453
 Borgert, Christopher 539, 541, 660
 Borrego, Carles 326
 Boruvkova, Jana 171
 Bosch, David 677
 Bosch, Jordi 123
 Boschen, Clint MP163
 Bossart, Gregory TP061
 Bossuyt, Bart TP133
 Botha, Hannes MP070, RP037, RP090
 Bottaro, Christina 354, 360, TP178, WP140
 Bottcher, Christine 229
 Boucher, Justin 615
 Bouhifd, Mounir 72
 Boulais, Myrina 308
 Bouldin, Jennifer 359, MP103, MP107, MP119, MP168, MP175, WP020
 Bourrat, Xavier 373
 Boutin, Céline 350, WP068
 Bouvy, Alan TP133
 Bowden, John 309, 636, MP070, MP192, RP090
 Bowen, Gabe MP197
 Bowerman, William 154, 155, MP047, TP005
 Bowers, Alexandra 277
 Bowers, Lisa RP018
 Bowers, Robert 213, TP051
 Bowersox, Marcus MP181
 Bowman, Sarah 16, MP077
 Boyi, Richard-Harris WP129
 Bo_i_, Nikola MP080
 Bozich, Jared 188, MP082
 Bradham, Karen TP107
 Bradley, Doug 745
 Bradley, Michael 606, 607, RP020, RP021
 Bradley, Paul 731
 Bragg, Leslie MP025
 Bragin, Gail WP185
 Brain, Richard 134, 141, 353, 446
 Brakstad, Odd 470
 Brame, Jonathon 746, 752
 Brandão, Fátima 149
 Brander, Susanne 423
 Branfireun, Brian MP078, TP020, TP022, TP029
 Brant, Heather TP205
 Brant, Jonathan 369
 Brasfield, Sandra WP012
 Bratton, Susan 248
 Braunbeck, Thomas 59, MP129, MP130
 Breed, Chris 119
 Bresee, Karl WP029
 Breton, Roger MP146, MP147, MP148, MP149
 Brett-Smith, Catharina 59
 Breure, Ton 638
 Brew, David 234
 Bridges, James 297, TP117
 Bridges, Kristin 310, 313, MP108
 Bridges, Todd 377, 624, RP002
 Briggs, Christian 378, WP016
 Brigham, Mark 113
 Brightsmith, Donald 334
 Brill, Jessica 62, MP166
 Brindle, Ian MP023
 Bringolf, Robert 433, RP126
 Brinkman, Fiona MP033, RP089, RP091
 Brittingham, Kevin MP152
 Brix, Kevin 304, 534, 671, 674, 675, MP110
 Brockmeier, Erica 16, 699, MP080
 Brodeur, Philippe 704
 Brodin, Tomas 570, WP109
 Brookes, Allen 444
 Brooks, Brian 21, 29, 119, 230, 233, 288, 367, MP085, MP086, TP130, WP041
 Brooks, Ross TP098
 Brooks, Scott 338, TP031
 Brothers, Elizabeth 385
 Brown, Ashli MP187
 Brown, Colin 713
 Brown, F. TP079
 Brown, Lauren RP051
 Brown, Lorraine 632, MP033
 Brown, Maria 23
 Brown, Timothy 127
 Brown, Trevor WP090, WP093, WP136
 Brown-Peterson, Nancy 218
 Brownawell, Bruce TP056
 Browne, Patience 394, MP137
 Bruchet, Auguste 369
 Brugger, Kristin WP066
 Bruins, Randall 723
 Brumback, Babette TP098
 Brumbaugh, Bill 197, 201
 Bruneau, Mélanie MP101
 Brunell, Arnold 636
 Brunelle, Heather 693
 Brüning, Ina 220
 Bruns, Eric TP043
 Brunswick, Pamela 498, WP159, WP160
 Bryan, Albert TP205
 Bteich, Michel WP095
 Bubnyte, Rasa 674, 675
 Buchan, Arthur 693
 Buchwalter, David 148, 673
 Buck, Jeremy 693
 Buck, Robert MP065
 Buckman, Kate RP079
 Budd, Robert RP017
 Buesseler, Ken RP109
 Burge, David MP175
 Burgess, Robert MP010, MP012, MP027, RP125, TP011, TP012, TP103
 Burggren, Warren 307
 Burguero, Lyle 364, 414, 573, 588, RP092
 Burken, Joel 87, 88, MP062, WP015
 Burkett, Sarah 119, 233, MP085, MP086
 Burkey, Kent 82
 Burkhard, Lawrence MP056
 Burkholder, Stephen MP088
 Burniston, Debbie MP203
 Burns, Andrea MP235
 Burns, Frank RP088
 Burns, Kalem WP201
 Burns, Lillian 486
 Burstin, Bruno MP177
 Burton, Allen 201, 493, 745, MP114, TP123
 Burton, G. Allen 592, 706, MP012, WP127
 Bury, Nicolas 295
 Bush, Lindsey TP099
 Buskey, Edward 306
 Buss, Daniel 315
 Butler, Chase 601
 Butler, Emma 699
 Butler, Josh 497, MP136, RP069, WP027, WP185
 Butt, Craig 194, WP179
 Buxton, Herbert 730, 731
 Byrne, Christian MP216

C Cabrera, Ana 120
 Cabrera-Sansores, Armando MP190
 Cacela, Dave TP053
 Cacho, Jérôme 366
 Cade, Brian 292
 Cadmus, Pete TP211
 Cafarella, Mark 176, 606, RP021
 Cahn, Michael RP017
 Cains, Mariana RP124
 Calfee, Robin 385
 Callaghan, Paul 81
 Callegary, James MP007
 Calomeni, Alyssa 422, TP016
 Calow, Peter 136, 722
 Camann, David 262
 Cameron, Marc 622
 Caminal, Gloria 326
 Campana, David MP145
 Campasino, Kayla 129
 Campbell, Dan 141, MP145
 Campbell, Dave 623
 Campbell, David RP068
 Campbell, Donald TP109
 Campbell, Larry MP212
 Campbell, Linda TP194, TP203
 Campbell, Peter G. C. 55, 56, 594
 Campos, Isabel MP142
 Canario, Joao TP019, TP026
 Canário, João 149
 Cañas-Carrell, Jaclyn TP072, RP006
 Canfield, Tim 91, 723
 Canniff, Patrick TP164
 Cano, Amanda RP006
 Canton, Steven 157, 528, 531, 532, WP122
 Cantu, Mark RP028
 Cantu, Theresa 309, MP070, RP037, RP090
 Cantwell, Mark TP011, TP012, TP103
 Cantwell, Rose TP098
 Cao, Jingbo TP102
 Capdevielle, Marie 542, WP219
 Capella-Vizcaíno, Santiago MP190
 Capellini, Luciana MP198
 Capo, Tom 52
 Carbajales-Dale, Michael 646
 Carbonaro, Richard 438, 439
 Cardon, Mary 734
 Cardoso, Olívia 149

Cardwell, Allison 177, MP116
 Carey, Stephen 460
 Cargill, IV, John 467
 Carling, Greg 5
 Carlisle, Darren 319
 Carlson, Kerri MP172
 Carlson, Pete 30
 Carlson-Lynch, Heather WP103
 Carney, Michael 310, 313
 Carpenter, David 350
 Carr, Gregory 60, MP166, TP209
 Carrasco Navarro, Victor RP008
 Carriere, Gary MP120
 Carrige, Lyndsay MP093
 Carro, Tiffany WP066
 Carson, Katherine 334
 Carter, Laura 229, 545
 Carton, Geoff WP017
 Carvan, Michael 411, RP081
 Cary, Timothy 504
 Casey, Ryan 110, MP151, MP152
 Casey, Warren 394
 Cash, Gordon 174
 Cashman, Michaela MP027, TP103, RP125
 Casman, Elizabeth 370
 Casper, Andrew 435
 Cassidy, Lauren 600
 Castañeda Antonio, Ma. Dolores MP117
 Casteel, Ken 741
 Castellon, Benjamin TP071, TP188
 Castillo, Blake MP097
 Castle, James 422
 Castro Larragoitia, Guillermo Javier MP041
 Catron-Kassim, Brittany MP192
 Cavallaro, Michael 13, 679, WP073
 Cavallin, Jenna 577, MP028, MP172
 Cave, Mark 554
 Cavileer, Tim RP076
 Cejas, Karen RP052, TP132
 Cejas, Mark RP052, TP132
 Celis, José MP224, MP239
 Celo, Valbona 400
 Cesário, Rute TP019, TP026
 Chadwick, Bart 466, MP057
 Chahal, Gurinderbir MP238
 Chai, Yunzhou RP060
 Chakravarty, Dolon 163, MP005
 Challis, Jonathan 266, RP014, WP142
 Chamberlain, Jordan 486
 Chambers, David 97
 Chambers, Patricia TP111, WP155
 Chambliss, Kevin 21, 119, 233, MP085, MP086, WP116
 Chamorro, Sara 326
 Champ, Samantha 291, WP220
 Champagne, Larry MP237
 Champlin, Denise TP055, RP079, RP119
 Chan, Laurie 525, WP091
 Chan, Maria MP190
 Chandler, Tom 208
 Chandramouli, Bharat 575, 580
 Chang, Daniel 409
 Chang, Elisabeth 295
 Chang, Feng-Chih 342
 Chang, Yoon-Seock 164, 555, MP096, MP201, RP029, TP077, TP078, TP084, TP140, TP142
 Chanov, Michael TP125
 Chapa, Leonardo 41, MP041
 Chapman, David RP035
 Chapman, Peter 721
 Chapman, Robert RP037
 Chappell, Mark 377, WP012
 Chappell, Pornsawan RP032
 Chappell, Shelby MP168
 Charlton, Anthony 705
 Charland, JeanPierre 400, WP155
 Charles, Makyba TP098
 Chatel, Amelie MP101
 Chatterjee, Aniruddha WP032
 Chau, Hong 658, WP115
 Chaves, Luis MP011
 Chaves-Barquero, Luis 451

AUTHOR INDEX

Checkai, Ron 510, WP001, WP002
Chen, Albert 193, WP179
Chen, Celia RP079
Chen, Chun 187
Chen, Da 192, 737, WP118
Chen, Huan 212
Chen, Jing RP109
Chen, Meng MP066
Chen, Sha TP102
Chen, Shirley 163
Cheng, Wan-Yun 363
Cheng, WanYun TP087
Cheplick, Mark 643, WP210, WP221
Chesney, Alexandra MP202
Chesney, Edward 308, 515, TP060
Chester, Aaron RP106
Chetelat, John 156
Chia, Sin Eng MP006
Childers, Christina MP187
Childress, William TP060
Chin, Yu-Ping 448, 678, 738
Chistoserdov, Andrei TP149
Chiu, Suzanne 48
Chivers, Susan WP117
Cho, JungHwan 355
Cho, Kijong RP096, TP189, TP208, WP026, WP070
Choi, Dong-Lim MP196
Choi, Kyungbo RP042, TP090, WP205
Choi, Seo-eun 729
Choi, Yongju WP057
Choi, Yun-Jeong RP029, TP084
Chopra, Karishma MP046
Chorover, Jon 508
Chow, Sylvia WP161
Chowdhury, Mohammed 557
Choy, Steven 113, 115, 602
Choyke, Sarah 215
Christ, Mark WP066
Christensen, Karen RP069
Chu, Fu-Lin 311
Chu, Kung-Hui 75
Chu, Shaogang TP083
Chu, Valerie 225
Chukwudi, Mgbedu WP069
Chumchal, Matthew 243
Chung, HyeonYong WP057
Chung, Katy 203, TP058
Church, Brian 533
Ciarlo, Michael 29, MP159, TP156
Cibor, Adrienne 18
Cinque, Kathy 348
Cipoletti, Nicholas 549
Clar, Justin TP100
Clark, Adelaide MP199, WP176
Clark, Adora 134
Clark, Bryan TP055, RP079, RP119
Clark, Cassandra RP107
Clark, Jeremy MP124
Clark, Robert 337
Clausen, Jay 504
Clayden, Meredith TP034
Claytor, Carrie 528, 531, 532, MP029, WP122
Clements, William 490, 513, TP211
Clendaniel, Alicea 749, TP069
Clerkin, David 630
Clifton, Andrew WP215
Clifton, Scott TP171
Clingenpeel, Amy 212
Clough, Jonathan 226
Clough, Stephen 432
Coady, Katherine 393, 540, RP110, WP111
Cobb, George TP188
Cobb, Jennifer MP175
Cobb, Juliana MP200
Cochran, Rebecca MP073
Coes, Alissa MP007
Coffin, Scott TP169
Cogburn, Lawrence RP088
Cohen, Joel 64
Cohen, Stuart 10, 94
Cohen, Tara TP138
Colbourne, John WP065
Cole, Donald 163, MP005
Cole, Julia TP156
Coleman, Jessica 384, 624, 746, WP012
Coleman, Rhys 348
Coletstock, Kaia MP232
Collette, Timothy 327, 412, 577, 702
Colli-Dula, Reyna RP103
Collier, Zach 746
Collinge, William 652
Collins, Josh WP054, WP055
Colman, Ben 495
Colombo, Fabio 200
Colson, Tash-Lynn WP207
Colvin, Marienne WP003
Conder, Jason 466, 475, MP008, MP064, RP026, WP056
Conley, Justin 734
Conlin, Ted 255
Connelly, Tara 306
Connolly, John 469, 620
Connor, Richard 317, 705, WP182
Connor, Emily 480
Connors, Kristin TP086, TP089
Conolly, Rory 363, TP087
Conrad, Zach 650
Constantine, Lisa TP118
Cook, Diana RP068
Cook, Laura TP155
Cook, Philip RP035
Cooke, Cheryl TP162
Cooke, Colin TP111
Cooksey, Cynthia 203
Cooksey, Gregory 747
Cooper, Christopher WP018
Cooper, Keith MP136, TP060, WP038, WP039
Cooper, Rebecca 359
Coors, Anja 710
Copes, Ray 163, MP005
Coral, Jason TP066
Corbin, Mark 133, 676
Corilo, Yuri 212, 656
Cormier, Susan 137, 139, 668, RP070
Cornelius-Green, Jennifer TP096
Cornett, Jack RP109
Corral-Avitia, Alba MP104
Corrales, Jone 21, 367, TP130
Corsi, Steven 114, 245, 362
Cosgrove, John 575, 580, TP076
Cossaboon, Jennifer WP117
Costa, Emily-Jane 714, 716
Costello, Christine RP098
Costello, David 201, 493, MP114
Coulson, Graeme 42
Counter, Marina TP013
Courtenay, Simon MP165
Cousens, Bruce MP226
Cousins, Ian 79, 485, WP037
Couture, Patrice 56
Covaci, Adrian 585, WP195
Cox, Darren 127
Cozzarelli, Isabelle RP107
Crago, Jordan TP088, RP122, WP193
Crawford, Christopher TP160
Crawford, Diane MP124
Crawford, Sarah 15, MP079
Cremazy, Anne 304
Cresswell, Tom 81
Crimi, Michelle 77
Crimmins, Bernard 342, 566
Crispo Smith, Sabrina TP082, TP176
Crocker, Brittany 247
Crofton, Kevin 9
Crone, Brian 254, 257, MP069
Crosby, Hayleigh MP095
Crossley, Dane 307
Croteau, Kelly 49, 50, RP105
Croteau, Marie 279, 280
Crouse, Lee 509
Crump, Doug 48
Csiszar, Susan 27, 483
Cude, Curtis TP013
Cui, Changzheng 207
Culbertson, Charlie MP216
Cullen, Alison 427
Cullen, Jay RP109
Cupp, Aaron MP183
Cura, Jerome WP189, WP202, WP211
Curran, Erin 549
Curran, Ty 421
Curren, Jane TP159
Curren, Meredith 525, MP005, WP091
Currie, Robert 293, TP114
Curry, Eric 478
Curtis, Kathryn 619
Cusaac, Patrick 631, 680, WP074
Cuscito, Leah 450
Cutler, Chris WP067
Cwiertny, David 323, 640, 641

D Dabek, Ewa 400
Dabney, Brittanie 513
Dahlen, Deirdre MP013
Dahlin, Ken 702
Dale, Amy 370
Daley, Jennifer MP114, TP123
Daley, Jennifer 745
Dalman, Nancy WP201
Dalton, Rebecca 350
Damery, Bill 2
Damm, Steve 316
Dang, Viet 314, MP063, RP015
Danil, Kerri WP117
Dann, Tom WP153
Dass, Amal 751
Dasu, Kavitha MP069
Davenport, Erik WP058
Davenport, Russell WP044, WP045
Davidson, Heather 476
Davie-Martin, Cleo 678
Davies, Iain 743
Davies, Martin WP156
Davis, Jay 23, 240, 316
Davis, Jessica 453
Davis, John 294, 412, 577, 702, RP060, TP113, TP115, TP116
Davis, Ryan TP158, WP054
Dawe, Kimberly 716, 720
Dawson, Daniel TP212, WP197
Dawson, Timothy RP035, TP206
Day, Russell MP192, RP036
de Boer, Dirk WP156
de Boer, Jacob 735
de Bruyn, Adrian 293, 621, 720
De Castro, Nuria TP037
De Cicco, Laura 114, 362
de Jourdan, Benjamin 177
De la Cruz Enríquez, Joel MP117
de Lima, Daina RP087
de Perre, Chloe RP120
De Schampheleire, Karel A.C. 707
De Silva, Amila MP074, WP177
de Solla, Shane MP049, WP207
de Voogt, Pim MP054
De Zwart, Dick 707
Dean, Stacey 265
Deardorff, Thomas MP143, MP144
Death, Clare 42
Deb, Nandita 418
Deb Adhikary, Nihar TP149
deBruyn, Adrian 714, 716
deCatanzaro, Denys RP040
DeCelles, Susanna 419
DeCourten, Bethany 423
Deegan, Daragh RP120
Defilippis, Luigi 81
DeForest, David 49, 50, 533, 534, MP110, MP116
DeHate, Robin 472
del Carmen Guzman Martinez, Maria TP139, WP198
DeLeon, Sabrina RP006
DeLorenzo, Marie 203, TP058, TP163
Delos, Charles 674, 675, 717
Deluchat, Veronique 147
DeMarini, David MP216
Denison, Michael WP143
Denslow, Nancy 314, 391, 392, 412, 703, 705, MP097, MP100, RP015, RP103, RP127
Dent, Stephen 237
Deschamps, Stephane RP088
DeShields, Bridgette TP120, WP213, WP218
Devaray, Joseph 627
Devaux, Alain 290
Dew, Bill 230
Dewey, Brad TP049
Dewild, John TP112
DeWitt, Ryan TP038
DeZwart, Dick 62
Dhal, Suman 264
Dhaliwal, Joginder TP079
Dhiyebi, Hadi MP025
Di Giulio, Richard 284
Di Toro, Dominic 312, 439, 595, RP059
Diamante, Graciela 57
Diamond, Jerome 709, 710, MP163, TP144
Diamond, Jerry 711
Diamond, Miriam 264, 613, WP173, WP178
Diamond, Stephen 746, 752
Dickerson, Kimberly MP225
Dickinson, Amy 419, 672
Dickson, Johnbull TP031
Dietrich, Watts TP181
Dietz, Rune MP068, MP071
Dieu, Marc 698
Diffendorfer, Jay 441
Diliberto, Janet MP216
Dillman, Brett MP170
Dillon, Frank 464
Dillon, Michael WP072
Dimacali, Rosemarie 719
Dingemans, Milou 69
Dinis, Lauriane WP157
Diniz, Lia Gracy MP198
Dionisio, Ariana WP022
Dishman, Diana 333, 444, 445, RP064, WP099
Dix, David 410
Dix-Cooper, Linda MP005
Dixon, D. George 54, 498, WP159
Dixon, Holly 262
Dodd, Matt MP123, MP194
Dodder, Nathan MP045, WP117
Dodge, Crystal 405
Doelsch, Emmanuel TP106
Doering, Jonathon 386, 389, RP093, RP111, WP105, WP107
Doherty, Anne 26, TP127, TP128
Doig, Lorne 437
Dollinger, Margit 347
Domagalski, Joseph 236
Domene, Xavier 123
Domingo, Thomas RP106
Dominguez, Gustavo MP098
Domoradzki, Jeanne 294, RP028, TP113, TP115, TP116
Donald, Carey MP020, TP184
Donatuto, Jamie MP212
Donohue, Keri 573, 584
Donovan, Ariel 276
Doolette, Casey 552
Dorsey, Jonathan 636
Dorts, Jennifer WP034
Dorward-King, Elaine 590
dos Santos Pereira, Alberto 496, WP007
Doucette, William 28, 84, 478, MP059
Dougan, Christine MP234
Dourson, Michael MP214
Douville, Mélanie 704
Doyle, John TP070
Draugelis-Dale, Rassa 392
Dreier, David 703
Drevnick, Paul 239
Driessnack, Melissa 301
Drouillard, Ken 436, MP044, TP022
Druwe, Ingrid 364

Du, Bowen 119, 654, WP041
 Dubansky, Benjamin WP061
 Dudley, Robert MP216
 Dudley, Stacia WP146
 Duffy, Brian 254, 257
 Duffy, Mark MP120
 Duffy, Tara 515
 Duggan, Sam TP211
 Duke, Clifford 723
 Duke, Stephen 461
 Dunham, Nick 153, 335
 Dunn-Johnston, Kristina MP227
 Duong, Thi Hanh WP115
 Duong, Wendy MP004
 Duphily, Brian 328
 Dupont, Dr Jennifer 522
 Dupont, Jennifer 418
 Durante, Jason MP178
 Durbano, Michael TP125
 Durda, Judi WP099
 Durhan, Elizabeth 412
 Duric, Mark 195
 Durocher, Kristen 222, TP193
 Dutkiewicz, Stephanie 618
 Dutton, Jessica MP112, TP197
 Dyck, Markus MP071, TP040
 Dyer, Daniel MP034
 Dyer, Orville RP038
 Dyer, Scott 61, 175, 706, 709, 710, 711, 742, RP045, TP144, TP209
 D'Silva, Lawrence 15, 437, MP079
 D'amico, Frank MP238

E Eadsforth, Charles 63, MP018, TP133
 Eagles-Smith, Collin 237, 239, 240, 241, 242, MP233, TP109
 Eakins, Robert WP052
 Earley, Ryan 395, WP034
 East, Andrew RP075
 Ebeling, Katherine 300
 Ebert, Dieter WP064
 Eck, William 506
 Eckley, Chris 236, 237, TP032
 Edge, Katelyn 579
 Edgington, Aaron TP168, TP191
 Edmands, Suzanne WP059
 Edmiston, Paul 265, 548, 550
 Edmunds, Richard 23
 Edwards, Daniel TP048
 Edwards, Margo 378, WP016
 Edwards, Peter WP066
 Edwards, Sally 431
 Edwards, Stephen 361, 408, 409, 567, WP102
 Egeghy, Peter 483
 Eggesbø, Merete 162
 Egli, Stefana 354, WP140, TP178
 Eguchi, Akifumi MP051
 Ehrlich, Ray 481
 Eickhoff, Jane 622
 Eid, Evan 412, MP028
 Eignor, Diana 346, 705, WP125
 Eisenreich, Karen 174, TP202
 Eisner, Bryanna WP105, WP107, RP111
 Ekman, Drew 112, 327, 412, 577, 702, 705
 El-Masri, Hisham 409
 Elias, Michael WP049, MP109, WP124, WP128
 Elizalde Ramirez, Laura TP046, TP139
 Elkhatib, Rola MP002
 Elliott, John 43, 44, 664, 747, MP042, MP044, RP038, TP002, WP083
 Elliott, Kevin 143, 415
 Elliott, Kyle 43, MP042
 Elliott, Sarah 113
 Ellis, Jamie 120
 Ellis, Steve 127
 Ellis-Hutchings, Robert RP060
 Ellisor, Michael MP192
 Elonen, Colleen 227
 Elonen, Greg TP206
 Elovitz, Michael TP014
 Elskens, Marc WP143
 Elskus, Adria MP216

Eltabache, Chafica MP002
 Embry, Michelle 62, 294, 586, MP129, TP113, TP115, TP116
 Emiko, Kokushii RP024, RP025
 Eng, Margaret MP044, TP002
 Engstrom, Arck TP069
 Engstrom, Daniel TP049
 Enrici, Marie-Hélène TP133
 Enyama, Moe 712
 Erickson, Paul 640
 Erickson, Richard 441, MP183
 Erickson, Russell 670, 672, TP190
 Ernstaff, Alexi 27
 Ertl, Hannah 334
 Esbaugh, Andrew 307
 Escalon, Lynn 116, 507, TP064
 Escobedo, John 357
 Espejo, Winfred MP224, MP239
 Espino-Devine, Catalina 562
 Essig, Don 628
 Estes, Tamara MP148
 Estrada, Nubia 82
 Estridge, Grace TP080
 Etheridge, Alexandra TP112
 Etterson, Matthew 131, 330, 443, RP035, RP077, RP082, RP083
 Eustis, Soren WP148
 Evans, Marlene 343, WP156
 Evans, Nicola 734
 Everett, Allen 67
 Everett, Aminda WP201
 Evers, David 240, 242

F Fadaei Khoei, Hilda 469
 Fair, Jeanne MP232
 Fair, Patricia TP061, RP124
 Fairbrother, Anne 285
 Fairbrother, Howard 189, WP084
 Fakours, Sadjad 566
 Falciani, Francesca 699
 Falisse, Elodie 329, WP032, WP034
 Fallis, Stephen 381, 382
 Falls, Alicia WP089, WP138
 Fan, Ming 742, RP045
 Fan, Yongshu 621, RP054
 Fanelli, Silvia 315
 Fang, James Kar-Hei 579
 Fang, Shuhong MP066
 Fang, Ting WP168, WP169
 Fantke, Peter 27, 84, 425, 487
 Farag, Aida RP071
 Farhat, Yasmine 20
 Faria, Melissa 366
 Farley, Kevin 438
 Farmahin, Reza 389
 Farr, Brianna 62, MP129
 Farr, James 225
 Farrar, Daniel TP059, TP121, WP189
 Farrer, David TP013
 Farris, Jerry 729
 Farruggia, Frank RP009
 Fatoki, OS 102, 454
 Fay, Kellie 294, 361, TP113, TP115, TP116
 Federle, Thomas 741, 742, WP046
 Fedoruk, Joseph MP156
 Feely, Jane RP116
 Feezel, Paul MP209
 Fehrenbacher, M 178
 Feifarek, David 546, RP132
 Feken, Max MP037, WP066
 Felipo, Vicente 576
 Felix, Lindsey 184
 Fellous, Alexandre 395, WP034
 Fenske, Richard 427
 Ferguson, Lee 189, 215, 249, 287, 563, MP095, MP097, WP081
 Ferguson, Steven 344, TP041
 Fernandez, Adolfo 177
 Fernandez, Diego 5, MP197
 Fernie, Kim 47, 270, 274, MP049
 Ferrara, Allyse 296
 Ferrario, Joseph MP216

Ferreira, Guilherme MP174
 Ferrer, Darci RP046
 Fetters, Kyle 254, 257
 Fevold, Brick TP150
 Fiala, Matthew 101
 Fick, Jerker 570, WP109
 Fidder, Bridgette TP212
 Field, Jennifer 543, 659, WP036
 Field, Jim 508
 Filer, Dayne TP089
 Finch, Bryson 312, TP057
 Finley, Monica TP034
 Firkus, Tyler RP116
 Fisk, Aaron 195, 344, TP040
 Flaherty, Colleen 221, RP070
 Flamion, Enora WP034
 Flanagan Pritz, Colleen TP109
 Flanders, John RP031, WP021, WP028, WP053, WP055
 Fleisig, Erica 530
 Flenniken, Michelle 127
 Fletcher, Dean TP199, TP204
 Fletcher, Karen TP146
 Flinders, Camille RP068
 Flynn, Maurea Nicoletti MP174, MP177
 Flynn, Robert 634
 Flynn, Shannon WP007, WP008
 Focazio, Mike 711
 Foley, Helen WP059
 Folkerts, Erik WP007, WP008
 Fong, Stephanie TP124, WP182
 Fontaine, Thomas 284
 Fontenot, Quenton 296
 Forbes, Valery 93, 440, 446, RP080, WP214
 Ford, Joseph 178, WP184
 Ford, Scott WP022
 Foreman, William 290
 Forget, Gael 618
 Forister, Matthew MP226
 Förlin, Lars WP050
 Forrest, Casey 620
 Forrow, David 725
 Forsberg, Norman 168, MP125
 Forsman, Brandy 670
 Fort, Doug TP044
 Fort, Douglas 630, MP072, WP220
 Fort, Troy MP072
 Forth, Heather 216, 308, 310, 313, TP052, TP053
 Fortin, Claude 55
 Fortin, Danielle 434
 Foster, Cindy MP187
 Fox-Lent, Cate RP100
 Fraga, Ana RP087
 Francisco, Alex 45
 Franco, Antonio RP078, WP094
 Franco, Teresa MP198
 François, Anthony 268
 Frank, Ashlea 36, 37, 129, MP145
 Frank, Erica RP109
 Frank, Richard 498, 500, 503, WP159, WP160, WP166
 Frankel, Tyler RP118
 Franzosa, Jill 365, TP086, TP089
 Fraser, Brian WP052
 Fraser, Daniel TP017
 Frederick, Jeffrey MP057
 Frederick, Logan MP197
 Fredricks, Kim MP183
 Fredricks, Timothy MP222, WP066
 Freedman, Dina MP197
 Freiberger, Megan WP148
 French, Susannah 633
 French-McCay, Deborah 523
 Friedman, Carey 618
 Friedman, Marvin RP103
 Friedrich, Lisa 387
 Friona, Anthony 259
 Fritts, Andrea 435
 Fritts, Mark 435
 Fritz, Kenneth 465
 Froese, Kenneth 289
 Fuchsman, Phyllis 200, RP051

Fuentes, Lattice 154, 155, MP047, TP005
 Fujita, Yuki 678
 Fulton, Michael 203, 208, TP058
 Furlong, Edward 453, 546, 730, 732

G Gaasland-Iattro, Lara 321
 Gadagbui, Bernard 31
 Gaddis, Erica 2
 Gaffney, Shannon MP207
 Gagliardi, Bryant MP141
 Gagne, Francois MP025
 Gagnon, Danielle 388
 Gagnon, Marthe Monique WP150
 Gainey, Shannon 175
 Gala, William 724
 Galar-Martínez, Marcela TP007
 Galar-Martínez, Marcela TP009
 Galar-Martínez, Marcela 151
 Galay Burgos, Maluya 707
 Galay-Burgos, Maluya WP044
 Gali, Rohith 682
 Galic, Nika RP080
 Galinaro, Carlos Alexandre MP198
 Gallagher, Evan 118, 367
 Gallagher, Jeffrey WP184
 Gallagher, Kathryn 705, RP067, TP003, WP124
 Gallegos Martinez, Margarita TP046
 Galvez, Fernando 308
 Gammon, Paul WP157
 Gan, Jay 260, MP126, MP128, WP146, WP193
 Gantner, Andrew 218
 Gantner, Nikolaus RP106
 Gao, Cong 189
 Gao, Jiejun 182
 Garant, Dany 336
 Garber, Kristina 35, 131, 330, 460, 665, RP009, MP038, RP077, RP082, RP083
 García-Medina, Sandra 151
 Garcia-Medina, Sandra TP009
 Garcia-Reyero, Nátilia RP032
 Gardberg, Jodi 2
 Gardinali, Piero 733, MP204, TP170
 Gardiner, William MP118
 Garman, Emily 201, 597
 Garner, Kendra TP063
 Garner, Ross 219, 310, 313
 Garner, T 308
 Garry, Michael MP158
 Garson, Nick 612
 Garvey, Edward WP211
 Gasca, Eloy TP009
 Gaspar, Tamara TP073
 Gates, Jennifer 176, 606, RP021
 Gaukler, Shannon MP232
 Gaus, Caroline 585, MP227
 Gauthier, Charles MP025
 Gauthier, Jeremy TP178
 Gavilan, Arturo TP074
 Gavilan, Irma TP074
 Gawor, Anya MP203
 Gaylor, Michael TP080
 Gazi, Mustafa TP180
 Gbondo-Tugbawa, Solomon WP211
 Ge, Feng 210
 Ge, Meng 98
 Geer, Tyler TP016
 Gefell, Dan 602
 Gefell, Daniel 113, 115
 Geier, Mitra 708
 Geiger, Franz MP082
 Geist, Juergen 317, WP182
 Gélabert, Alexandre 373
 Gendron, Mary 357
 Gensemer, Robert 472, 528, 531, 532, MP029, WP122
 George, Robert 377, 379, 380, TP162, WP003, WP013, WP014, WP019
 Geppert, Mark WP082
 Gerstler, Hope 609
 Geter, David 539
 Getzinger, Gordon 249
 Geurts, Marc TP133

AUTHOR INDEX

Gewert, Berit 246
Geyer, Roland 486
Ghebremichael, Lula 134
Ghimire, Chandra Ghimire MP194
Ghosh, Upal 467, 469, MP012, MP127, MP153
Giang, Amanda WP100
Giddings, Jeffrey 36, 37, 198, 606
Gidley, Philip 173
Gielazyn, Michel TP053, TP059
Giesy, John 386, 389, 496, 499, MP024, MP025, MP031, MP185, RP086, RP093, RP111, RP115, TP085, WP067, WP105, WP158
Gilbreath, Alicia 477
Gill, Ranjit TP082
Gillespie, Lauren 332
Gillett, David 318
Gilley, John WP035
Gillgarth, Philip 485
Gillham, Robert RP016
Gillies, Kendall 583, RP076
Gillio Meina, Esteban WP165
Gilliom, Robert 319
Gillis, Patricia 19, WP160, WP166, WP186
Gilman, Andy 180
Gilron, Guy WP009
Ginebreda, Antoni TP037
Gipe, Alex 654
Girard-Kemp, Andréanne TP050
Giraudo, Maeva 704, RP095
Glaser, David 619
Glassmeyer, Susan 730, 732
Gleason, Amber 405, TP111
Glenn, Brad TP043
Glinski, Donna A 234
Glomski, Martin 25, MP155
Gnau, Jennifer RP056
Gobas, Frank 181, 524, 621, 623, RP026, RP054
Gobeil, Charles 404
Godard, Celine 357, TP061
Goedkoop, Mark 604
Goel, Ramesh 8
Goetz, Frederick RP081
Goetz, Jennifer TP032
Goh, Kean RP017
Golden, Emily 424
Golden, Nancy 35, 132
Goldenberg, Neil 67
Goldsmith, Rocky 409
Gomez, Miguel 650
Gómez Ramos, María José RP101
Gomez-Eyles, Jose WP213
Gomez-Gimenez, Belen 576
Gomez-Olivan, Leobardo 151, TP007, MP104
Gómez-Oliván, Leobardo TP009
Gonçalves, Renato WP141
Gondek, John 531, 532, WP122
Gong, Ping 414, WP011, WP031, RP092
Gong, Zhiyuan MP173
González-Acuña, Daniel MP224, MP239
Goodfellow, William 91, 474, 669, TP122
Goodrich-Mahoney, John 345, 674, 675
Goss, Greg 184, WP007, WP008
Goss Laird, Jennifer WP031
Goswami, Emily 25
Goto, Akitoshi MP188
Gottschalk, Fadri 375
Gou, Na 368
Gouquet, Ronald RP005
Gouin, Todd 586, 744, WP088, WP089, WP133, WP137, WP138
Goulet, Joe 693, TP032
Goussen, Benoit RP078
Govender, Danny RP037
Grabner, Daniel 145
Grace, Richard TP076
Graf, Karla WP009
Graham, David 67
Graham, Larissa 11
Graham, Monty 226
Grantz, David 82
Grasman, Keith 272
Gray, Austin 16, 244, 247
Gray, James 453
Gray, John 237
Gray, Leon 396
Gray, Taylor RP114
Gray, Wes MP162
Greaves, Alana 267, TP001
Green, Derek 15, MP079, MP120
Green, John 349, 690, TP048, WP053
Green, Micah TP072
Green, Stephen 729
Greenberg, Grace MP115
Greene, Richard 467
Greenfield, Ben 206
Greenfield, Carrie WP038, WP039
Greer, Colleen 34, 38, MP222
Greggs, William 29, TP131
Gresens, Susan WP188
Grey, Marriah 622
Greyell, Carly RP030
Grgicak-Mannion, Alice 436
Griffin, Timothy 650, RP099
Griffiths, Emma RP089, RP091
Griffitt, Robert 214, 218, MP093, TP054
Griggs, Jennifer TP107
Grimm, Volker 93
Grippo, Richard 104
Gros, Jonas MP139
Gros, Meritxell 326
Grosell, Martin 52, 217, 307, 308
Grosso, Nancy TP158, WP054
Grover, Melissa 466, RP048
Grubb, Teryl 154, 155, MP047
Gschwend, Phil MP012
Gu, April 368, MP138, RP085
Gu, Baohua 82
Guberman, Sarah WP061
Guchardi, John MP178, RP133
Guenzel, Lareina 530
Guffey, Samuel RP120
Gui, Lai RP016
Guillette, Louis 309, 636, MP070, RP037, RP090
Guillette, Matthew 636, MP070, RP037, RP090
Guiney, Patrick 10, 90, 94
Guiseppe-Elie, Annette TP147
Gundersen, Jennifer TP183
Gunn, John MP078, TP020, TP029
Guo, Nick MP237
Guo, Weihong TP176
Gupta, Naveen Kumar 335
Gupta, Vadakattu 552
Gust, Kurt 383, 414, 507, 588, WP011, RP092
Gustafson, Kyle TP201
Gustin, Mae 237
Gutsell, Steve 699
Guzman-Garcia, Kochitl TP139

H Ha, Sungyong MP193, MP196
Habekost, Maike RP021
Habig, Clifford WP078
Hadad, Christopher 448
Haddad, Sami WP095
Haddad, Samuel 21, 119, MP085, MP086, WP041
Hadfield, Steve MP234
Haffner, Douglas TP022
Haftka, Joris 172, MP018, MP054
Hageman, Kimberly 124, 678
Hagood, Gale MP187
Hahn, Mark RP119
Hahn, Noah 503
Haines, Cheryl WP183
Haines, Doug MP005
Hajibabaei, Mehrdad 503
Hala, David RP028
Halappanavar, Sabina WP154
Halbleib, Mary MP020
Halden, Norman 387
Halden, Rolf 314, 683, RP010, RP015
Halder, Marlies 62, 294, MP055, MP129, TP113, TP115, TP116
Hale, Christine 11
Hale, Robert 190, 273, TP161
Haley, Mark WP001, WP002
Hall, Britt 238
Hall, Scott TP044
Hall, Tilghman 92, 129, 688, MP145, TP043
Hamblin, Francis 67
Hamer, Mick J. 713
Hamers, Robert 188, MP082, MP098
Hamers, Timo 735
Hamilton, Coreen TP076
Hamilton, Madison 185
Hammel, Stephanie TP081
Hammer, Edward TP192, TP215
Hammer, Jort 172, MP054
Hammerschmidt, Chad MP114
Hammill, Kristine 231
Hammond, Austin 632
Han, Gi Myung MP196
Han, Xing 294, TP113, TP115, TP116
Han, Yuwei MP066
Hana, Robert MP151
Hancock, Jaclyn 40
Handschoen, Lisa WP059
Hanna, Shannon 747, WP083
Hanna, Theresa MP039, MP040
Hannes, Andrew 254, 257
Hansel, Mike TP044
Hansen, Benjamin RP103
Hansen, James MP109
Hanson, David TP025
Hanson, Mark 266, 353, 450, 451, 457, 685, MP019, WP142
Hanson, Niklas WP050
Hanson, Sara MP024, MP025, MP031, MP185
Hanzas, John MP148
Harbi, Hattan 499
Harding, Louisa RP076
Hare, Landis 56
Haring, Herman 419, 465
Harmon, Ashley 384, WP012
Harmon, Sarah WP131
Harner, Tom 400, MP015, MP016, WP154
Haroune, Lounès 336
Harper, Bryan 275, 749, TP069
Harper, David RP071
Harper, Stacey 275, 749, TP069
Harrell, Reginal 514
Harrington, Hal 259
Harris, Adeline 148
Harris, Meagan J. 691, 728, RP001
Harris, Reed 345
Harrison, Anna 493
Harshbarger, John TP095
Hart, Katherine 480
Hart, Michael 219
Hartig, Nicole MP151, MP152
Hartig, Phillip 734
Hartman, Alex 242
Hartman, Laura RP124
Hartmann, Harry MP194
Hartmann, Nanna RP033, WP086
Hartsfield, Shannon TP098
Hartung, Thomas 72
Hartzell, Sharon MP179
Harvey, Gregory 82
Harwani, Suhash 161
Hasenbein, Simone 317, WP182
Hashimoto, Shunji WP119
Haskell, Patrick TP193
Hathcock, Charles MP232
Hatton, Tyson MP183
Haupt, Tina 61
Hauser, Karah MP151
Hausmann, Natasha TP146
Havranek, Ivo WP147
Hawkes, Tony 133
Hawkins, Adam TP064
Haynes, Christy MP082
Haynes, Erin MP209

Haynes, Lesli 311
Haynes, Vena 282
Hazewinkel, Roderick WP156
He, Wei MP075
He, Xi 650
He, Yuhe WP007, WP008
Head, Jessica MP046, RP081
Headley, John WP071
Headley, John Vernon 498, 679, WP073, WP159, WP160
Healey, Michael MP008
Heberling, Matthew TP014
Hebert, Craig 274
Hebert, Michaela 296
Hecht, Scott 39, 132
Hecker, Markus 386, 389, 567, MP024, MP025, MP031, MP185, RP086, RP093, RP111, RP115, WP105, WP106, WP107, WP200
Hedgecock, Jill 612
Hedgpeth, Bryan WP027, RP069
Heerema, Jody RP134
Heide, Timon WP105
Heim, Brad MP237
Heine, Lauren 482, 604
Heinemann, Oliver MP034
Heitzman, Jackie RP136
Helbing, Caren 575, 632, RP089, RP134
Hellal, Jennifer TP105
Helm, Paul 170, 196, MP023, MP203, WP173
Helz, George 560
Henderson, Matthew 234
Hendesom, Anna 450
Hendley, Paul 198
Hendon, Read 226
Henry, Kevin TP048, WP066
Henry, Natasha TP061
Henry, Paula 47, 270
Henry, Tala 687
Henshel, Diane MP048, RP124
Hentges, Steve 140
Hentz, Karyn TP168
Hepner, Brent TP172
Herbstman, Julie 262
Hermens, Joop L.M. 61, 172, MP018, MP054, WP134
Hernandez, Laura MP011
Herrera-Herrera, Jose TP006
Herrmann, Krystal MP211
Hershey, Anne 211, TP018
Herzog, Mark 242
Heuett, Nubia 733
Hewitt, Mark 498, 500, 503, WP159, WP160, WP166
Heyes, Andrew MP179
Heynen, Martina 570
Hickey, Brian 156
Hickmann, Silke 637
Hicks, Stephen WP215
Hielscher, Al 225
Higgins, Christopher 78, 543, 544, 655, 659, WP084
Highland, Terry 670, RP019
Hihara, Lloyd 380
Hijazi, Hassan 360
Hileman, Sarah TP136
Hill, Brian 127
Hill, Colin MP152
Hill, Elaine 650
Hill, Marcus MP037
Hillger, Robert MP216
Hills, Amber MP176
Hills, Kasey WP005
Hillwig, Rebecca TP013
Hinarejos, Silvia 123, MP035
Hines, Ronald 284
Hinton, Kelsey RP124
Hipszer, Rachel 58
Hirsch, Helmut WP060
Hites, Ronald 191, WP174
Hladik, Michelle 126, MP089, MP226, MP233, WP076
Ho, Kay MP027, RP125, TP011, TP012, TP103

Hoag, Marie WP204
 Hoang, Tham Chung 144, 299, TP164
 Hobbie, Kevin MP208
 Hoberg, James 122, MP036
 Hobson, Keith 337
 Hockett, Russ 670, 672, RP019, TP190
 Hodas, Natasha WP171
 Hodges, Geoffrey 699, MP018, TP133
 Hodges, Juliet WP094
 Hodson, Peter 502, WP163
 Hoeger, Glenn MP125
 Hoff, Dale 670, MP056, RP035, TP206
 Hoffmann, David TP154
 Hoffmann, Kate TP081, WP179
 Hoffmann, Kristy TP158
 Hoffman, Peter MP205
 Hoffmann, Ary MP141
 Hofmeister, Erik 331
 Hogan, Natacha MP024, MP025, WP029, MP031
 Hogstrand, Christer 295
 Hoh, Eunha MP045, WP117
 Hohne, Peter TP005
 Hoke, Robert RP088
 Holden, Arthur MP045
 Holder, Jennifer 45
 Holdway, Douglas 322, 397, MP178, RP117, RP133
 Hollender, Juliane 707
 Hollert, Henner WP105
 Holliday, Mark MP087
 Hollucher, Kurt WP060
 Holloway, JoAnn TP112
 Holmback, Jan WP139
 Holmes, Charisse 398
 Holmes, Christopher 643, 713, MP032, RP046, WP210, WP221
 Holmes, Jonathan TP114
 Holsen, Thomas 566, WP118
 Holsen, Tom 77, 342
 Holt, Eva 171
 Holtzman, Nathalia 390
 Hommen, Udo 93
 Hong, Chuan TP024
 Hong, Seongjin TP090
 Hong, Youwei 260
 Hontela, Alice MP024, MP025, MP031
 Hooker, Toby MP083
 Hooper, Kim MP045
 Hooper, Thom 128
 Hooven, Louis 749
 Hopke, Phillip 342, 566
 Horai, Sawako WP126
 Norman, Brian 193
 Hornberger, Michelle 491
 Hornung, Michael 396, 567
 Hosmer, Alan 353
 Hosoda, Mai WP126
 Hosozawa, Takeshi WP126
 Houck, Keith 117, 365, TP086, TP089
 Houde, Magali 268, 269, 704, MP074, RP095, TP041
 Housenger, Justin MP038
 Houtman, Corine 735
 Hovel, Wendy 619
 Hoven, Heidi 4, 5, 6
 Howard, Brett 481
 Howard, Cynthia 105
 Howie, Rachel 296
 Hristozov, Danail 375
 Hsu, Alan 695
 Hsu-Kim, Heileen 750, TP071
 Hu, Jianying WP108
 Hu, Jing 294, RP060, TP113, TP115, TP116
 Hu, Man MP138
 Hu, Wei 68
 Huang, Lei 27, 614, WP094, RP097
 Huang, Li-fei 160
 Huang, Lianxi TP153
 Huang, Ming Hua 459
 Huang, Ruili TP086
 Huang, Susie 575
 Huang, Yufen TP153
 Huang, Zachary 120
 Huba, Anna Katarina MP204
 Huber-Sannwald, Elisabeth 725
 Hudson, Michelle MP114, TP123
 Hudson-Heck, Ellie 548
 Huerta Buitrago, Belinda 326
 Hufschmid, Jasmin 42
 Huggett, Duane MP032, RP027, RP028, WP217
 Hugh, Peter MP013
 Hughes, Christopher 179, WP043
 Hughes, Jamie RP022
 Hughes, Lee 107
 Hughes, Megan MP028
 Hughes, Sarah 63, 387
 Hughes, Thomas MP216
 Hull, Ruth WP123
 Hultman, Maria 61
 Hummel, Ruth 62
 Huncik, Kevin MP192
 Hung, Hayley WP175
 Hungerbuehler, Konrad 79, 376, 615, WP037
 Hunt, Jennifer 477
 Hunt, Lisa 315
 Huntsman-Mapila, Philippa WP121
 Hurley, Susan TP176
 Hurt, Robert 748
 Hussey, Nigel 344
 Hutchinson, Kelly MP135
 Hwang, Hyun-Min 101, WP120
 Hyder, AHM TP173
 Hyland, Jeffrey 203
 Hyland, Katherine 78, 655
 Hylton, Christopher 150
 Hyne, Ross WP005

I Ibam, Udu TP036
 Ibburg, Joseph MP171
 Ichii, Osamu MP052
 Ichikawa, Nobuhiro WP149
 Iguchi, Taisen RP131
 Ikenaka, Yoshinori MP052
 Ilina, Svetlana TP104, TP108
 Impellitteri, Christopher TP100
 In, Christine TP162
 Incardona, John 23
 Ingersoll, Chris 199, 201, 290, 605, 610, RP022, RP023, TP190, TP192, TP215, TP216
 Inoue, Takanobu TP023
 Irani, Tracy TP098
 Irvine, Cameron 719
 Isaacson, Carl 106, TP110
 Isaboke, Claire MP200
 Iseyemi, Oluwayinka 729
 Ishibashi, Hiroshi WP149
 Ishibashi, Yasuhiro WP149
 Ishizuka, Mayumi MP052, TP075
 Isobe, Tomohiko MP003
 Israelsson, Peter 620
 Itai, Takaaki MP188
 Ito, Shinko MP106
 Ivanova, Jelena WP114
 Ivey, Chris 610, TP190
 Iwata, Hisato MP050, MP051
 Iwinski, Kyla TP016
 Izquierdo, Ricardo MP186

J Jackman, Paula 629
 Jackovitz, Allison 509, MP039, MP040
 Jackson, Allyson 242
 Jackson, Craig WP065
 Jackson, Raymond RP088
 Jackson, William 82
 Jackson, Zachary 387
 Jacob, Annie 258, MP184, WP058
 Jacob, Lisa 188
 Jacobs, Anne MP232
 Jacobs, Molly 426, 428, 431
 Jahnke, Annika 173, 739, WP139
 Jalalizadeh, Mehregan 166
 James, Andrew 654
 James, Kyle 554

Jamwal, Ankur 301
 Janechek, Nathan 527
 Jankowski, Mark 331
 Janssen, John 259
 Jantunen, Liisa 264, MP015, MP203, WP173, WP175, WP178
 Janz, David MP120, MP185
 Jara, Solange MP224, MP239
 Jardine, Tim 44, 292, MP120, WP200
 Jariyasopit, Narumol MP016, WP154
 Jarnagin, Lara MP161, MP164, MP169
 Jarvis, Amanda TP003, WP124
 Jastrow, Aaron 327, 702
 Jautzy, Josue 404
 Jawor, Jodie 332
 Jayasundara, Nishad 725
 Jayawardena, Uthpala TP214
 Jaycock, Michael 31
 Jenkins, Jill 391, 392
 Jenne, Polly 225
 Jensen, Kathleen 412, MP028, MP172, WP102
 Jenson, Correne 670
 Jeong, Yoon-Hwa TP189
 Jepson, Paul MP020
 Jeremiason, Jeff TP017
 Jessop, Mike MP234
 Jett, Trent TP028
 Jevtic, Dragan 16, MP080
 Jeyasingh, Puni 420
 Jia, Ai 559
 Jiang, Chuanjia TP071
 Jirik, Andrew 619
 Jirsa, Michael TP125
 Joachim-Lehmler, Hans 85
 Jobst, Karl MP023
 Johanning, Karla 294, 296, TP113, TP115, TP116
 John, Gilbert 32
 Johns, Annie 691
 Johns, Mike RP005
 Johnson, David 505
 Johnson, Ed 254, 257, 258, MP184, WP058
 Johnson, Erica 277
 Johnson, Katherine RP072
 Johnson, Mark 10, 94, 286, 506, 509, MP040, RP049
 Johnson, Monique 747, WP083
 Johnson, Nathan 352, TP017, TP049
 Johnson, Rodney 325, TP010
 Johnson, Sarah 67
 Johnson, William 5, MP197
 Johnston, Robert TP162
 Johnston, Tom MP078, TP020, TP029
 Johs, Alexander TP033
 Jolliet, Olivier 27, 206, 487, 614, WP094, RP097
 Jolly, Louis TP105
 Joner, Erik WP147
 Jones, Craig 224
 Jones, Dean 68
 Jones, Michael TP028
 Jones, Paul 499, MP024, MP025, MP031, MP185, RP093
 Jones, Russell 713
 Jones, Stephanie 48
 Jones, Steve RP053
 Jones-Lepp, Tammy 732
 Jonker, Willem 735
 Jonsson, Micael 570
 Jorgenson, Brant TP104
 Jorgenson, Zachary 113, 115, 602
 Joudan, Shira 76, 450
 Jovanovic, Boris MP094
 Joy, Stacey WP035
 Joyce, Abigail MP010
 Judson, Richard 394, MP137
 Judy, Jonathan 187
 Julias, Christine MP221
 Juncos, Romina TP203
 Juneau, Philippe MP186, TP050
 Jung, Dawoon TP090, WP205
 Jung, Jee Hyun MP193
 Jung, Jin-Woo RP029

Jungmans, Marion 707
 Just, Craig 85
 Justice, James WP049, RP067
 Justus, Billy MP175

K Kadlec, Sarah 325, TP010
 Kadokami, Kiwao 653, 658, WP115
 Kahl, Michael 412, MP028, MP172
 Kakouros, Evangelos 238
 Kalbassi, Mohammad Reza TP065
 Kalina, Ji-í 171
 Kalmatskaya, Olesya TP042
 Kalmes, Renee 25, MP122, MP156, MP157, MP158
 Kamaludeen, Sara 545
 Kameda, Yutaka 358, MP021, MP022
 Kaminski, Norbert 143
 Kamo, Masashi 694
 Kamogawa, Marcos TP141
 Kan, H MP135
 Kanarek, Andrew RP082
 Kane, Andrew 287, TP098
 Kane Driscoll, Susan MP012, TP168, WP180
 Kang, IL-Mo RP034
 Kang, Jung-Ho MP201
 Kang, Lei MP075
 Kannan, Kurunthachalam 158, 159, MP001
 Kapla, Jacqueline WP183
 Kapo, Katherine 440, MP032, MP091, RP046, WP214
 Kapoor, Vikram TP100
 Kapustka, Lawrence 289, 723, MP217
 Kara, Yvonne MP148, MP149, WP075
 Karamanukyan, Tigran WP059
 Karavaev, Vladimir TP042
 Karchner, Sibel RP119
 Karouna-Renier, Natalie 47, 270, 273
 Karthikeyan, KG 86
 Kascak, Alex WP187, WP204
 Kaserzon, Sarit RP101
 Kashian, Donna 490
 Kashuba, Roxolana 479, 669
 Kaspar, Jeffrey MP118
 Kassotis, Christopher TP096
 Katz, David TP011, TP012, TP103
 Kavanagh, Terrance 367
 Kawa, Mary 430, 603, RP061, WP103
 Kawano, Machi RP024, RP025
 Kazpard, Veronique 147
 Kearney, Lina 574
 Keating, Jonathan 343
 Kefford, Ben WP005
 Kegley, Susan 127
 Keiser, Sharon TP033
 Keith, Richard WP065
 Keizer, Jan MP142
 Kellar, Nicholas 357
 Keller, Arturo 486, TP063
 Kelley, Barbara WP027
 Kellock, Kristen 551
 Kellogg, Jonathan RP109
 Kelly, Barry 83, MP006, MP061, MP195
 Kemble, Nile 610, RP022, RP023
 Kemman, Richard 129
 Kendall, Ronald 153, 335
 Kennedy, Alan 383, 517, 624, 746, 752, RP032, TP064, TP121, WP031
 Kennedy, Amuel TP202
 Kennedy, Chris TP109
 Kennedy, Christopher MP033, RP091, RP135
 Kennedy, Ian RP016
 Kennedy, Sean 389, MP044
 Kennedy, Theresa TP146
 Keough, Michael 17, 348
 Kern, Matthew 440, MP087, MP091, TP048, WP066, WP214
 Kessel, Steve 344
 Kestemont, Patrick 698
 Ketelies, Kristen 327, 702
 Key, Peter 203, TP058
 Khairy, Mohammed 261, 468
 Khan, Bushra MP162, MP184

AUTHOR INDEX

Khanijo, Ishadeep 643, WP210, WP221
 Khim, Jong Seong TP090
 Kickbush, Jocelyn TP194
 Kidd, Karen 292, 341, 711, TP034
 Kiekhaefer, Rebecca 422
 Kienzler, Aude 62, 290
 Kierdorf, Uwe 42
 Kierkegaard, Amelie 739, WP139
 Kierski, Michael WP180
 Kiesling, Richard 113
 Kieu, Le 238
 Kiffney, Peter 490
 Kilgallon, John WP094
 Kilgour, Bruce 407
 Killian, Karissa MP084
 Kilmer, Mary MP103, MP168
 Kim, Anne 174, TP202, WP184
 Kim, Cheolmin TP090
 Kim, Da-hye 80
 Kim, Jaehwan MP096, TP078
 Kim, Jeong-Hoon RP029, TP084
 Kim, Jongchul MP201, TP078, TP142
 Kim, Jun-Tae 164, 555, MP096, MP201, RP029, TP077, TP078, TP084, TP140, TP142
 Kim, Moonkoo MP193, MP196
 Kim, Myung Hee 75
 Kim, Sujin WP205
 Kim, Un-Jung 80
 Kim, Yang-Hoon RP094, RP123, RP129
 Kim, Yongeun RP096, TP189, TP208, WP026, WP070
 Kimberly, David MP084, WP062
 Kimborough, Kinami 258
 Kimborough, Kimani 254, 257, MP184, WP058
 Kincl, Laurel 262, MP208, MP209
 King, Ryan 233, TP068
 Kingston, Skip 71
 Kinley, Ciera 422, WP190
 Kinney, Chad WP040
 Kinzinger, Brian 227
 Kirby, Ian TP055, RP079
 Kirby, Jason 552
 Kirk, David MP042
 Kirk, Jane 343, 405, TP111, WP155
 Kirkwood, Ashlee MP036
 Kirtay, Victoria 466
 Kissel, John 427
 Kistler, Whitney 335
 Kivi, Michelle 293, TP114
 Klaine, Stephen 250, 281, 547, MP121, RP072, RP142, TP066, TP067
 Klaminder, Jonatan 570
 Klanova, Jana 171
 Klaper, Rebecca 188, 254, 258, 324, MP082, MP098, RP122, TP088
 Klapstein, Sara 339, TP025
 Klein, David 357
 Klein, Olaf WP080
 Kleinstreuer, Nicole 394
 Klemish, Jamie 501
 Klerks, Paul TP149, WP187, WP204
 Kliegman, Sarah 640
 Klingler, Rebekah 411
 Knaebe, Silvio WP080
 Knafla, Anthony 417
 Knapen, Dries 567, WP195
 Knapp, Charles 450, 451, WP142
 Knappe, Detlef 736
 Knarr, Tricia 497, RP069
 Kneeland, Jessie 64, 601
 Knobel, Melanie 61
 Knoll-Gellida, Anja 366
 Koekoek, Jacco 162
 Koelmans, Albert 710, 711
 Koenig, Mark MP013
 Kohlschmid, Eva 347
 Kolb, Ruth MP163
 Kolluru, Venkat 522
 Kolodziej, Edward 323, 640, 641, 654
 Kolok, Alan 20, 449, MP030, MP211, TP065
 Kolpin, Dana 453, 546, 730, 731, 732, RP118
 Kong, In Chul RP034
 Kong, Lingxiao WP115

Konovets, Igor MP027, RP125
 Kookana, Rai 229, 545
 Kool, Jeroen 735
 Kosal, Jakub 367, 413
 Kosatsky, Tom MP005
 Kothalawala, Nuwan 751
 Kovacevic, Vera 581
 Kowalski, Brandon 237
 Kowalski, John 432
 Koyama, Jiro RP024, RP025
 Krabbenhoft, David 237, 238, 340, TP112
 Krajewski, Logan 212
 Kramer, Vincent WP215
 Krasnec, Michelle 218, 308, 310, 311, 313, TP053, TP059
 Krattenmaker, Katherine 277
 Kraus, Johanna 465, 488, 492
 Krause, Miriam MP082
 Krayem, Maha 147
 Kreider, Marisa MP053
 Krest, Sherry TP154
 Kristiansson, Erik 574
 Kristofco, Lauren 367, TP130, WP041
 Kroger, Robert TP179
 Kroll, Alexandra TP093
 Kroll, Kevin 314, RP015
 Kroner, Oliver MP214, MP218
 Krueger, Annie WP072
 Krueger, Hank 606, RP021
 Krueger, Henry 609, TP045
 Krug, Tom WP056
 Kruger, Greg 682
 Krull, Marcos WP191
 Kruse, Susanne WP086
 Krysl, Ryan MP030
 Ku, Wen 620
 Kubala, Lukas TP015
 Kubik, Laura MP099
 Kubi_ska, Natalia MP229
 Kucklick, John MP192
 Kucuk, Erdi 632
 Kuivila, Kathryn 336, 731, MP233
 Kullik, Sigrun 639
 Kullman, Seth W. 365, TP086
 Kultz, Dietmar 395
 Kun, Zhang 496
 Kung, Tiffany MP238
 Kunisue, Tatsuya MP003, MP050, MP051, MP188, MP191, TP075, WP126, WP144
 Kunte Pandurangarao, Nageshrao 77
 Kunz, James 290, 610, TP215, TP216
 Kuperman, Roman 510, WP001, WP002
 Kupsco, Allison 715, RP074, WP193
 Kurup, Pradeep 355
 Kutti, Tine 579
 Kuzmanovic, Maja TP037
 Kwon, Gwijun 398
 Kylin, Henrik MP203

L La Guardia, Mark 190
 Labarrere, Carla 15, MP079
 Labed-Veydert, Tiphaine WP034
 Labille, Jerome 369, TP104, TP108
 Labrousse, Pascal 147
 Laetz, Cathy 33, 131
 LaFond, Sophie 352
 LaFontaine, Joseph 436
 Lagadic, Laurent TP043
 Lahren, Tylor MP056
 Lalli, Priscila 656
 LaLone, Carlie 396, 567, 569, 571, 577, MP038
 Lamb, Eric 554
 Lambert, Chuck 157
 Lamichhane, Kiran WP215
 Lamoree, Margarette 162, 735
 Lamoureux, Elizabeth 619
 Lampi, Mark MP129
 Lan, Qing 68
 Lance, Stacey 634, 635
 Landers, Dixon TP109
 Landis, Matthew 402

Landis, Richard WP028
 Landis, Wayne 320, 321, 663, 691, 728, TP001
 Lange, Ted 636
 Langlois, Valerie 502, WP163, WP207
 Langseth, David 625
 Lanier, Susan MP176
 Lankone, Ronald 189, WP084
 Lanno, Roman 448, 553, 557, WP006
 Lanza, Heather MP073
 Lao, Wenjian 260
 LaPara, Timothy WP183
 Lapczynski, Aurelia RP043
 Larcombe, Lee 572
 Larese-Casanova, Philip MP138
 Larew, Scott WP010
 Lari, Ebrahim WP162
 Larsen, Karl RP038
 Larsson, Åke WP050
 Laska, Mark RP003
 Lauan, Claret MP050
 Laue, Heike 61, 294, TP113, TP115, TP116
 Lauer, Thomas MP081
 Laurenson, James 235
 Lavelle, Candice 391, 392, MP095, MP097, MP100, MP102, RP127
 Lavoie, Daniel MP058
 Lavoie, Emma 603, MP154
 Lawler, Sharon 317, WP182
 Lay, Claire 218, 308, 310, 311, 313, TP052, TP053, TP059
 Layet, Clement TP106
 Lazarus, Rebecca 273, TP166
 Lazorchak, James 254, 257, 327, 419, 465, WP004
 Le, Thao TP078
 Le, Tuyen WP144
 Le, Vu Quynh Anh RP129
 Le, Yen 556
 Le Bihanic, Florane 366
 Leaf, Robert 226
 Leal, Frederico WP033
 LeBlanc, Gerald 398, 399
 LeBlanc, Jason TP194
 Ledezma, Aura MP011
 Leduc, Elise WP202
 Lee, Cindy MP063
 Lee, Douglas MP214, MP218
 Lee, Duk-Hee 164
 Lee, Inae RP042, TP090
 Lee, Kathy 113, MP026
 Lee, Larisa TP192
 Lee, Linda RP120
 Lee, Michael 176
 Lee, Min Kyeung RP034
 Lee, Sandi MP042
 Lee, Sangwoo TP090
 Lee, Wen-Hsiung 178
 Lee, Yun-sik RP096, TP189, TP208, WP026, WP070
 Lee-Jenkins, Stacey 46
 Leet, Jessica 58
 Lefèvre, Florent MP186
 Lefkovitz, Lisa MP013
 Legge, Allan 401
 Legler, Juliette 162
 Legros, Samuel TP106
 Lehman, Christine 667, MP135
 Lehmann, Wade 697
 Lehnher, Igor 405
 LeHuray, Anne 661
 Leipzig-Scott, Peter 292
 Lemaire, Eloise TP169
 Lenaker, Peter 114, 245
 Lenihan, Hunter TP063
 Lent, Emily 509
 Leon Paumen, Miriam WP027, WP185
 Leonard, Erin 19
 Leonard, Jeremy 409
 Leonards, Pim 69, 485, 576
 Leonetti, Christopher 194
 Lepak, Jesse 240

Lescord, Gretchen MP078, TP020, TP029, TP034
 Leslie, Jennifer MP019
 Lesperance, Mary 632
 Lester, Brian TP030
 Letcher, Robert 47, 267, 270, 274, MP049, MP068, MP071, TP001, TP002, TP040, TP083
 Letinski, Daniel 497, MP136, WP027, WP185
 Leung, Kenneth Mei Yee 710
 Lev, Steven 10
 Levin, Ed 365
 Levine, Steven 666
 Levy, Mike 481
 Lewandowski, Tom TP129
 Lewis, Ari TP129, MP220
 Lewis, Barbara 175
 Lewis, Carlie WP164
 Lewis, Dion 518
 Lewis, Mark 693
 Lewis, Matthew 75
 Lewis, Maude MP186
 Lewis, Nate 533
 Li, Caixia MP173
 Li, Huizhen 519, 611, RP007
 Li, JiaJia TP022
 Li, Lingjun MP202
 Li, Miling 340
 Li, Ning WP170
 Li, Shengxi 380
 Li, Shibin 752
 Li, Wei MP067
 Li, Xu WP035
 Li, Xuan TP100
 Li, Xueshu 85
 Li, Yan MP173
 Li, Yanliang TP153
 Li, Zhe 455, RP101
 Liang, Lisa MP207
 Liang, Yanna 276
 Liang, Yuzhen RP059
 Liao, Chunyang MP128
 Liao, Qian 379
 Libal, Sadie TP110
 Libelo, Laurence 178, WP184
 Liber, Karsten 406, 437, WP071, WP073, WP165
 Liebens, Johan MP150
 Liem, Francisca 665
 Liess, Matthias 315
 Lietz, Christopher MP202
 Liggio, John MP016
 Lilavois, Crystal RP058, RP062, TP192
 Lillicrap, Adam 61
 Limkakeng, Alexander WP179
 Limmer, Matt 87, 88, WP015, MP062
 Lin, Bin-Le 694
 Lin, Jerry 237
 Linard, Erica 281
 Lindell, Angela TP199, TP204
 Lindsay, James TP121, RP032
 Lindsey, Angela TP098
 Lindsey, Tiffany 308
 Linkov, Igor RP100
 Linnenbrink, Monica 9
 Liong, Monty MP207
 Lipton, Joshua 218, 308, 311, 313, TP052, TP053
 List, Victoria 620
 Lister, Andrea 538
 Little, Edward 290, 385
 Liu, Fengjie 55
 Liu, Hongliang RP086, RP115
 Liu, Jihong TP024
 Liu, Jing TP188
 Liu, Jinxia 74, MP067
 Liu, Jun 75
 Liu, Liang-Ying 191
 Liu, Ruiling 161, TP176
 Liu, Wenxiu MP075
 Liu, Xuehong WP081
 Liu, Yongchun MP016
 Liu, Zhengtao 742, WP024

Liu, Zhongzhen TP153
 Llansola, Marta 576
 Lnenicka, Gregory WP060
 Lo, Justin 524, 623
 Lo, Ray RP089, RP091
 Lobodin, Vladislav 656
 Lobson, Chelsea WP142
 Locke, Martin TP179
 Lockwood, Richard RP073
 Locrel, Mélodie WP034
 Löfstrand, Karin TP145
 Loganathan, Bommanna TP039, RP104
 Loh, Ai Ning 311
 Lohmann, Rainer 170, 196, 261, 468, 618, WP107
 Lohse, Detlev 188, MP082
 Lomas, Emily RP038
 Lombardi, Christie 124
 Londono, Nathalia 276
 Long, Sara 17, MP141
 Long, Steve 636, MP192
 Loomis, Mark 252
 Looney, Brian TP205
 Lopez Montalvo, Carlos 357
 López-Doval, Julio C. TP037
 Lopez-Velandia, Catalina 736
 Lord, Heather 167
 Lorenz, Alyson TP134
 Lorenzo, Amelia TP081
 Losey, Barbara RP110, WP111
 Loso, Heather 612, 626
 Lotufo, Guilherme 377, 384, 507, 624, TP059, WP011, WP012, WP013, WP014
 Louka, Febee WP204
 Love, Natalie TP175
 Loveridge, Alexandria 146
 Lowder, Matthew MP162, MP184
 Lower, Nicola RP091
 Lowers, Russell RP037
 Lowney, Yvette 25, MP122
 Lowney, Yvette MP157
 Lowry, Gregory 370
 Lu, Che 53
 Lu, Jie 212, 656
 Lu, Yang 552
 Lu, Zhe MP049, RP014
 Lucas, Daniel 326
 Luchmann, Karim RP087
 Ludwigs, Jan-Dieter RP084
 Luellen, Drew TP161
 Luers, Micheal MP085, MP086
 Lukowicz, Abigail RP107, RP136
 Lunsman, Tamara TP137, TP177
 Luo, Yi 209
 Luoma, Samuel 279
 Luong, Kim 450, 451, MP011, WP142
 Luttbeg, Barney MP009
 Lutz, Michelle 240, 241, 245
 Luxon, Matthew 695
 Luxton, Todd TP032, TP100, TP107
 Lyakhovsky, Anatoly MP027
 Lyashenko, Artem MP027, RP125
 Lydy, Michael 315
 Lynch, David 178
 Lyon, Delina 179, 700, WP043
 Lysiak, Nadine TP185

M Ma, Xinxin WP024
 Ma, Zhiyuan RP115
 Maack, Emma 255
 Mabury, Scott 73, 76
 MacCrehan, William 560
 Machado, Marcos TP141
 Macherone, Anthony 65
 Mack, Pierre WP080
 Mackay, Cameron WP137
 Mackay, Donald 586, WP090, WP132
 MacKenzie-Taylor, Deb 551
 Mackintosh, Susan WP117
 MacLeod, Alexander 514
 MacLeod, Matthew 246, 739, TP145, WP139
 MacPherson, Karen MP023

Maddox, Catherine 47, 270
 Madison, Barry 502, WP163
 Maehara, Misaki MP052
 Maenpaa, Kimmo 173
 Magar, Victor 466
 Magaw, Renae 562
 Magee, Brian MP125
 Mager, Edward 308
 Magnuson, Kristen 486
 Mahaney, Wendy RP051
 Mahapatra, Cecon 182, RP120
 Mahapatra, Debabrata 365, TP086
 Mahler, Barbara 290, RP023, WP076
 Maho, Walid WP195
 Mahoney, Eileen MP057, WP189, WP202, WP211
 Maida, Jared RP038
 Maier, Andrew 31, WP216
 Maier, Kurt 91
 Main, Anson 679
 Majewski, Michael 236
 Major, Kaley WP063
 Maki, Ben WP022
 Maldonado, Alejandra 152
 Malloy, Timothy 431, 599
 Malmquist, Jacob MP131
 Maloney, Erin 15, MP079, WP071
 Maltby, Lorraine 347, 713
 Mamantov, Andrew 178
 Mancini, Cecilia RP031, TP158, WP021, WP054, WP055
 Manek, Aditya MP170, RP134
 Manning, Gillian MP148, MP149
 Mansfield, Chad 313
 Mansfield, Charles 310, TP067
 Mansouri, Kamel MP137
 Manzano, Carlos 561, WP155
 Mao, Daqing 209
 Mao, Jingdong MP060
 Maples-Reynolds, Nikki RP027, WP217
 Marchessault, Nathaniel MP036
 Marchi, Mary Rosa WP141
 Marchuk, Jascha 549
 Marcum, Teddy MP221
 Marden, Brad 3
 Marentette, Julie WP160
 Margiotta-Casaluci, Luigi 295, 568
 Margrans, Jose Oriol 689
 Marini, Joseph MP160
 Markiewicz, April 320, RP001
 Marler, Hillary 737
 Marovich, Richard 39
 Marques, Maria RP087
 Marrochi, María Natalia 315
 Marrs, Carl 206
 Marsh, Brendan RP012
 Marshall, Lisa WP123
 Marshall, Samantha MP234
 Marshall, Stuart 706, 724
 Marshall, Valerie MP216
 Marsico, Travis MP175
 Marston, Brett 692
 Martello, Linda RP048
 Marti, Elisabet 326
 Martin, David 746
 Martin, Jonathan 403, 496, WP007, WP008
 Martin, Joseph 143
 Martin, Matt TP089
 Martin, Olwenn 688
 Martin, Sheridan 545
 Martin, Tim WP044, WP045
 Martin, Todd RP058
 Martínez Carrera, Daniel MP117
 Martínez Ruiz, Erika Berenice WP199
 Martinez-Guitarte, Jose-Luis RP039, RP121
 Martinez-Jeronimo, Felipe Fernando WP199
 Martinez-Paz, Pedro-Jose RP121
 Martínez-Vieyra, Catalina 151
 Martínovics-Weigelt, Dalma 361, 412, 549, 640, MP026, RP107, RP116, RP136, TP186
 Martinson, John RP119
 Marty, Sue 393, 540
 Martyniuk, Christopher 703, 705

Maruya, Keith 208, 260, WP117
 Marvin, Chris 561, WP177
 Marvin, Craig 657
 Marvin-DiPasquale, Mark 238
 Marx, David WP035
 Marzooghi, Solmaz 312
 Mason, Ann 481
 Mason, Ryan MP111
 Mason, Sherri 245, TP167
 Mast, Alisa TP109
 Mastrangelo, Christina 427
 Mastrotta, Nicholas RP009
 Masue-Slowey, Yoko 474
 Mathews, Anne TP098
 Mathews, Teresa TP027, TP028
 Mathieu, Guilaine 366
 Mathis, Michael 630, MP072, TP044, WP220
 Matoba, Yoshihide RP063
 Matson, Cole 233, 750, TP068, TP071, TP188, WP061
 Matsukami, Hidenori WP144
 Matsumoto, Yoshitaka TP023
 Matsushita, Takafumi MP188
 Matthies, Michael 180
 Maul, Jonathan MP073, RP006, TP072
 Maung-Douglass, Emily 11
 May, Ashley WP040
 Mayasich, Joseph MP028
 Mayel, Mida WP129
 Mayer, Christoph 347
 Mayer, Gregory 214
 Mayer, Philipp 173, WP135, WP139, WP195
 Mayes, Melanie TP031
 Mayfield, David MP115, RP049
 Maynard, Doug 401
 Mayo, Michael 363, 584, 588
 Mayo-Bean, Kelly 600
 McAllister, Jillian RP038
 McArthur, J. TP199, TP204
 McAvoy, Drew 745, WP046
 McCarthy, Christopher MP109
 McCarty, Harry TP138
 McCauley, Edward 277
 McCauley, Jacob MP119
 McCleskey, R. TP112
 McCluskey, Jemima TP068
 McConnell, Laura MP034
 McCright, Aaron 143
 McCue, Dana TP147
 McCulloch, Wayne TP125
 McCullum, Kevin MP120
 McDaniel, Phillip WP060
 McDermott, Gregory MP228
 McDonald, Shane MP057
 McDonough, Carrie 170, 196
 McDonough, Kathleen 741, MP166, WP046
 McDougall, Matthew MP019
 McEachran, Andrew 452
 McElroy, Anne RP024, RP025
 McFadden, Lisa 539
 McGaughey, Bernalyn 36, 37
 McGee, Beth MP179
 McGee, Sean 606, RP018, RP021, TP043, WP066
 McGeer, Jim 51, 53, 146
 McGowan, Peter 273, TP166
 McGrath, Margaret 82
 McGuire, Jennifer RP107
 McIlroy, Laura RP061
 McInnis, Rodney 19, WP166
 McIntyre, Dennis 717
 McIntyre, Jenifer 23, 316
 McIvor, Ian 417
 McKee, Lester 477
 McKenna, Amy 212
 McKeon, Casey MP124
 McKernan, John TP032
 McKinney, David MP176
 McKinney, Melissa 344
 McKone, Thomas 206, 487, 520
 McLain, Kelly 40
 McLaughlin, Mike 552, 593

McManus, Michelle RP006
 McMaster, Mark 500, WP166
 McMeans, Bailey 195
 McMillan, Larry 565
 McMullin, Vince MP165
 McMurry, Scott 631, 680, WP074
 McNeill, Kristopher 640
 McNeill, Laurie 478
 McNett, Debra RP028
 McQueen, Andrew 422
 McQueen, Rachel WP178
 Mead, Chris WP042, WP043
 Meador, Jim 118
 Meager, Justin MP227
 Meays, Cindy 302, MP170
 Mebane, Chris 305, TP200, WP052
 Medlock, Elizabeth 398, 399
 Meese, Robert MP226
 Meliñto, Alvina 391, 392, 412
 Mehler, Wesley TP119
 Mehlhorn, Tonia TP031
 Meier, Carolin 486
 Meier, John 465
 Mejia, Sandra 74, MP067
 Melby, Nick 383
 Meli, Mattia RP084
 Melia, Julie WP103
 Melnikov, Fjodor 367, 413
 Melymuk, Lisa 171
 Mendes, Ricardo TP026
 Mendonca, Raissa MP114
 Meng, Chunxia TP096
 Meng, Wu 98
 Meng, Yaobin 694
 Menon, Rohan WP212
 Menzie, Charles 479, MP012
 Menzie, Charlie 10, 474, 669, WP180
 Menzies, Jennifer WP046
 Mercer, Alison 124
 Mercier, Jean-Francois RP109
 Meredith, Ashley MP187
 Meregalli, Giovanna 347
 Mermer, Serhan WP077
 Merrifield, Ruth 280, WP085
 Merrington, Graham 707
 Messmer, Ron RP068
 Metzger, Bernhard 700
 Meyer, Carolyn 45
 Meyer, Charles 63
 Meyer, David 483
 Meyer, Joel MP099, TP021
 Meyer, Joseph 45, 300, 303, MP111, TP196
 Meyer, Justin TP038
 Meyer, Michael RP118
 Mgbemena, Celestina I 473
 Miao, Guan TP090
 Michel, Caroline TP105
 Michel, Nicole 337, 679, MP231
 Michelsen-Heath, Sue 124
 Michiels, Ellen WP195
 Middlebrook, Molly TP150
 Mieck, Susanna 59, MP130
 Mierau, Kerry TP210
 Mierzynowski, Steven MP216
 Miewald, Thomas RP064
 Mihaich, Ellen 140, 540, 542, WP219
 Milani, Danielle WP186
 Milestone, Craig 498, WP159
 Miliano, Rachel 632
 Millemann, Daniel TP060
 Miller, Carrie TP028, TP030
 Miller, David RP079
 Miller, Debbie TP133
 Miller, Elizabeth 86
 Miller, Janet 419, TP200
 Miller, Jennifer 629
 Miller, Kenneth TP150
 Miller, Theron 3, 4, 5, 6, 7
 Millington, Mallory MP197
 Mills, Gary 433
 Mills, Marc 253, 254, 255, 257, 465, 730, 732, MP069

AUTHOR INDEX

Mills, Margaret 367
 Milroy, Scott 226
 Milsk, Rebecca MP038
 Milyukin, Mikhail MP027, RP125
 Mimbs, William 631, 680, RP057, WP074
 Mimma, Melissa TP175
 Min, Jijo RP094, RP123, RP129
 Minarik, Thomas 549
 Minghetti, Matteo 183, WP082
 Minick, Jamie 708
 Miresse, Christine 549
 Mišljenović, Tomica 16, MP080
 Mitchell, Gary MP223, MP238
 Mitchelmore, Carys 216, TP052
 Mitsuyma, Mako 712
 Mittal, Krittika MP046
 Miyagawa, Shinichi RP131
 Miyakawa, Hitoshi RP131
 Miyasaka, Shuhei 620
 Miyata, Chiyoko RP063
 Mizukawa, Hazuki MP050, MP051, MP052, TP075
 Mlnarikova, Maria 61
 Mo, Hyoung-ho RP096, TP189, TP208, WP026, WP070
 Moate, Ashley WP200
 Mochinaga, Keita 653
 Moço Erba Pompei, Caroline TP182
 Moermond, Caroline 686
 Moffatt, Marianna WP183
 Mohaddes, Effat WP162
 Mohler, Rachel 562
 Mohrherr, Carl MP150
 Mohseni, Paria 503
 Moland, Marla WP020
 Molin, Daphne 26, TP127, TP128
 Mona, Mohamed WP067
 Monchanin, Coline 124
 Monson, Chris RP076
 Monson, Phil 351, TP049
 Montano, Manuel 189, 374
 Monteiro, Carlos Eduardo TP019
 Montoro Bustos, Antonio 747
 Monzalvo, Karina 41, MP041
 Moore, Adrian RP126
 Moore, Christine WP123
 Moore, David 725
 Moore, Dwayne MP149
 Moore, Dwayne R.J. 34, 38, 96, MP146, MP147, MP222, RP018, WP066
 Moore, Janet 208
 Moore, Jeremy 113, 115, 272, 602
 Moore, Lindsay TP005
 Moore, Matt 729, TP179
 Moore, Murray 331
 Moosova, Zdena TP015
 Mora, Francisco 411
 Mora, Miguel 152, 334
 Morales, Alfy WP204
 Morales, Monica RP121
 Morales Almora, Porfirio MP117
 Moran, Kelly 598, TP128
 Moran, Kendra 600, 603
 Moran, Patrick 199, RP022, RP023
 Morandi, Garrett 496
 Morandi, Paul WP204
 Morcillo, Gloria RP039, RP121
 Morgan, Jade 103
 Morison, Ian WP032
 Morlacci, Laura 430, 603, RP061, TP134, WP103
 Morley, Eric WP060
 Morris, Adam 195
 Morris, Glenn TP098
 Morris, Jeff 216, 218, 219, 308, 310, 311, 313, TP052, TP053
 Morris, Jeffrey TP059
 Morris, Kristi TP109
 Morris, William 42
 Morrison, Ann 479, WP180
 Morrison, Jessica 32
 Morrison, Shane 263, 631, MP009, WP014, WP098
 Morris, Robert 682
 Morrissey, Christy 44, 271, 336, 337, 679, MP043, WP071, WP073
 Mortensen, Spencer 608, WP066
 Mortenson, Holly 567
 Moschet, Christoph RP102
 Moser, Robert 752
 Mota, Ana Maria TP019, TP026
 Motta, Wladimir 645, 647
 Mouneyrac, Catherine MP101
 Mounicou, Sandra 56
 Mount, David 325, 605, 670, 672, MP056, RP019, TP010, TP190, TP206
 Mouvet, Christophe TP105
 Mucha, Amy 253, 255
 Mudge, Joseph MP073
 Mudrock, Emma 23
 Mueller, Jochen RP101
 Muellner, Mark 651
 Muir, Derek 170, 195, 196, 292, 343, 344, 400, 405, 561, 707, MP074, TP041, TP131, WP155, WP156, WP177
 Mulholland, James WP168
 Muller, Gabrielle RP087
 Mundy, C. 451
 Munguia Pérez, Ricardo MP117
 Munive Hernández, Antonio MP117
 Munkittrick, Kelly 407, MP165
 Munns, Wayne 724
 Muñoz, Isabel TP037
 Muñoz Rojas, Jesus MP117
 Munthali, Annuciata 278
 Munthali, Wizaso WP172
 Murakami, Shoichi WP126
 Murphy, Catherine 188, MP082
 Murphy, Cheryl 415, 662, MP046, RP081, WP101
 Murphy, Elizabeth TP138
 Murphy, Mark 702
 Murray, Deborah MP029
 Murray, Jacolin 564, MP192
 Murray-Gulde, Cynthia 157
 Mwaanga, Phenny 278, WP172
 Myer, Mark 185
 Myers, Jackie 348
 Myers, Karen 33, 128
 Myers, Mark TP095
 Myrbo, Amy TP049

N Nabb, Diane 294, TP113, TP115, TP116
 Nabi, Deedar MP139, WP145
 Nacci, Diane TP055, RP079, RP119
 Naddy, Rami TP126
 Nadeem, Mohamed RP128
 Naeim, Elsaied WP067
 Nagam, Satya RP128
 Nagato, Edward 582
 Nagel, Susan TP096
 Nagler, James RP076
 Nahlik, Amanda 723
 Naito, Wataru 694
 Najar, Fares 507
 Nakamura, Mikio WP126
 Nakashita, Rumiko WP126
 Nakayama, Shouta MP052
 Nallani, Gopinath MP223
 Naoum, Jonathan MP186
 Napack, Jan RP068
 Nash, Jay 30
 Nason, Sara 86
 Natividad-Rangel, Reyna TP007
 Natsch, Andreas 61
 Navarro, Divina Angela 552
 Nedrich, Sara WP127
 Needham, Trevor MP153
 Neff, Jerry 518
 Nelms, Mark 408
 Nelson, Bryant 747, WP083
 Nelson, David TP176
 Nelson, Karen MP225, TP004, TP157
 Nelson, Krysta RP113

Nelson, Patrick 206
 Nester, Walter TP005
 Nester, Michael MP002
 Netzer, Roman 470, 579
 Neuman-Lee, Lorin 633
 Neureuther, Nicklaus 254, 257, 258
 Nevitt, Andy 609
 Newell, Sandra 384
 Newman, Michael WP191
 Newsome, Tavias RP104
 Newstead, David 271
 Newton, Kim MP076, MP121
 Ng, Carla 615
 Ng, Grace MP173
 Ng, Nga WP169
 Ngo, Thuy MP097, MP100
 Nguyen, David 702
 Nguyen, Khanh-Hoang TP142
 Nguyen, Ngoc Tu RP094
 Nguyen, Tue MP188, MP191, WP144
 Nichols, Elizabeth 452
 Nichols, John 294, TP113, TP115, TP116
 Nicolette, Joseph RP004
 Nielsen, Dreas 223
 Niemuth, Nicholas 324
 Nishimoto, Kei MP003
 Nishimura, Ryo MP191
 Niyogi, Som 301, WP165
 Nnadozie, Ikechukwu 473
 Noble, Abigail 601
 Noblet, Raymond MP171
 Noernberg, Tommy 403
 Noestheden, Matthew 78
 Noguchi, George 130, 133
 Nogueira, Lygia TP207
 Nogueira, Marta TP019
 Nomiyama, Kei MP050, MP051, MP052, TP075
 Norberg-King, Teresa 62, 670, MP129, RP019
 Norbury, Veronica 44
 Norena-Barroso, Elsa MP190
 Norman, Julia 199
 Norman, Marjorie 24
 Norman, Sean 208
 Norris, Greg 650, RP099
 North, Paula 165
 Norwood, Warren 54, WP166
 Novak, Jiri 61
 Novak, Lesley 202
 Novoa-Luna, Karen TP007
 Nowell, Lisa 199, RP022, RP023
 Nowlin, Weston 243
 Nusz, Josie TP048
 Nystrom, Gunnar 512, RP112

O O'Brien, Anthony RP068
 O'Donnell, Michael 671
 O'Hara, Todd 357
 O'Neill, Chris 348
 O'Shaughnessy, Kathryn 308, 515
 Oates, Peter 620
 Obal, Terry 167
 Oberrauch, Sophia 59, MP130
 Occhialini, Jim 432
 Ochoa-Acuna, Hugo 347, MP092
 Odekunle, Temitope 70
 Odenkirchen, Edward 330, RP009, RP082, RP083
 Oetter, Günter MP018, TP133
 Ogbonna, Chibuzo TP148
 Oginawati, Katharina WP130
 Ogle, R. Scott 218
 Oh, Dasom 164
 Oh, Jeong Eun 80
 Ohlendorf, Harry 719
 Oiler, Jonathon WP014
 Ojong, Bawak WP023

Okech, Bernard 287
 Okeme, Joseph 264
 Okereke, Chinonso TP152
 Oki, Noffisat 408
 Oladipo, Akeem TP180
 Olatunji, Olatunde 102, 454
 OLeary, Daniel MP223
 Olivares, Christopher 508
 Oliveira, Thaynan MP200
 Oliveira, Thiessa MP198
 Oliveri, Anthony 365
 Olivier, Heather 391, 392
 Ollivier, Patrick 369, TP104, TP105, TP108
 Olsen, Todd 338
 Olson, Adric MP073, TP212, WP197
 Olson, Jonathan 505, RP050
 Olson, Lynne 651
 Omara, Mark 342
 Omoja, Valentine MP230
 Omotosho, Ishiaq 70
 Ong, Choon Nam MP006
 Onoriede, Glory 70
 Onwurah, Ikekuchwu TP148, TP187, WP069
 Oorts, Koen 553, 557
 Opeolu, Beatrice 102, 454
 Orazio, Carl MP216
 Oris, Jim 310, TP006, RP056
 Orlando, Edward RP118
 Orlando, James MP226
 Orme-Zavala, Jennifer 521
 Orr, Galya MP082
 Ortega, Van 184
 Ortego, Lisa 92, 140, 537, 540, 608
 Ortell, Natalie 214
 Ortiz Almirall, Xavier MP023
 Osachoff, Heather MP033, RP091
 Osemwengie, Lantis 103
 Oshihoi, Tomoko MP051
 Oshita, Tsuyoshi 143
 Oshiumi, Chika WP126
 Osman, Nick 696
 Osman, Sommer WP204
 Ostaszewski, Art 551
 Österlund, Tobias 574
 Otitaju, Olawale WP069, WP129
 Otter, Ryan 108, 109, 253, MP176
 Ottinger, Mary Ann 273
 Overmyer, Jay MP037, MP235
 Overturf, Carmen 186, 308
 Overturf, Matthew 322, 397, RP117, RP133
 Ovesen, Jerry WP216
 Owen, Robert MP152
 Owen, Stewart 295, 568, 574
 Ownby, David 110, MP151, MP152
 Oyen, Kennan WP072
 Ozáez, Irene RP039
 Ozaki, Hirokazu 100
 Oziolor, Elias WP061
 Ozulumba, Tochukwu TP187
 O'Brien, Megan 255
 O'Connell, Steven MP014
 O'Driscoll, Nelson 149, 339, 341, TP025, TP034
 O'Neill, Marilyn 612
 O'Reilly, Kirk 562

P Pacelli, Courtney 29, MP159
 Pacheco, Mário 149
 Pacheco-Ávila, Julia MP190
 Paciorek, Karolina MP229
 Packard, Stephanie 506
 Padilla, Lauren 36, 134, 681, MP149
 Padros, Francesc 366
 Painter, Kyle 364
 Palace, Vince 270, 387, MP019, MP049, TP165
 Palancares Garcia, Sinuhe TP046
 Palani, Sankar Ganesh 753
 Palmer, Craig TP150
 Palmer, Rick RP091
 Palmqvist, Annemette 251
 Pan, William TP021

Pan, Xiaoping TP062, TP099, RP114
 Pan, Xiaoyu MP066
 Panagiotakis, Michail WP082
 Panagopoulos, Dimitri 739
 Pandelides, Zacharias 322, RP117, RP133
 Panger, Melissa 33, 130, 132, 460
 Panko, Julie MP053
 Paquin, Paul 674, 675
 Paretti, Nick MP007
 Pardee, Suzanne 157
 Park, Bradley TP165
 Park, June-Soo 161, MP004, MP045, TP079, TP082, TP176
 Park, Richard 226
 Parker, Ann 31
 Parkerton, Thomas 497, 707, MP136, WP027, WP185
 Parks, Ashley TP103
 Parnia, Abtin 163
 Parra, Amanda TP072
 Parrott, Ben 636
 Parrott, Joanne 500, WP160, WP166
 Parry, Emily MP004
 Pasparakis, Christina 217, 308
 Pastor, John 352, TP049
 Pastorinho, Ramiro MP111
 Pastorok, Robert 440, 445, WP214
 Patel, Pratikumar 52
 Patel-Coleman, Kanan TP159
 Path, Elise 512, RP112
 Patisaul, Heather 193
 Patmont, Clay TP158, WP054
 Patmont, Eli 467
 Patnaude, Michael 122
 Pattanayek, Mala TP120, WP213, WP218
 Patterson, Jacqueline MP218
 Patterson, Luanne WP009
 Patterson, Sarah 386, 388, WP106
 Patton, Andrew RP011
 Paul, Katie 537
 Paul, Keith 128
 Paul, Kieth 39
 Pauli, Bruce 46
 Paulik, L MP209
 Paulik, L. Blair 16, 168
 Pauwels, Hélène 373
 Pawlisz, Andrew TP143
 Pawłowski, Sascha 291, WP220
 Payne, Justin 552
 Pazderka, Matthew 549
 Pearce, Paul 119
 Pearson, David MP078
 Pearn, Thomas WP177
 Peaslee, Graham 543, WP036
 Peck, Chuck 39, 133
 Pedersen, Joel 86, MP082, MP202
 Pedro, Sara 344
 Peijnenburg, Willie 556
 Pekarova, Michaela TP015
 Pelletier, Fanie 336
 Pelletier, Rick 403
 Peng, Hui 499, RP093, RP111, TP085, WP108
 Pennell, Kurt 68
 Pennington, Paul 203, 208
 Penno, Sue 67
 Peper, Steve 153, 335
 Peranganinang, Natalia 134, MP234
 Percy, Kevin 401, 402, WP153
 Pereira, Patricia 149, MP142
 Perez, Edgar 299
 Pérez-Coyotl, Isabel TP009
 Perkins, Daniel 440, 682, WP214
 Perkins, Edward 116, 363, 414, 573, 584, 588, 701, MP026, RP092
 Perla, Donna MP215
 Perrein, Hanane MP101
 Perron, Marie-Claude MP186
 Peru, Kerry 498, 679, WP071, WP073, WP159, WP160
 Peters, Christian 650, RP099
 Peters, Colleen 248
 Peters, Emily 351, TP049
 Peters, Greg 485
 Peters, Lisa 270
 Peters, Rachel 554
 Petersen, Elijah 747, WP083
 Peterson, Elizabeth WP060
 Peterson, Jeff 693
 Peterson, Jennifer 693
 Peterson, Mark MP113, TP027, TP028, TP030, TP031
 Petreas, Myrto 161, MP004, TP079, TP082, TP176
 Petropoulou, Syrago- Stylianu 161
 Petrovic, Mira TP037
 Pettigrove, Vincent 17, 348, MP141, TP119
 Peverly, Angela WP174
 Pfeiffer, Danielle 628
 Pfrender, Michael WP064
 Phalyvong, Karine 373
 Pham, Viet WP144
 Phelps, Laura 129, MP146
 Philibert, Clara WP164
 Philibert, Danielle WP164
 Philipps, Rebecca 433
 Phillips, Allison 193
 Phillips, Bryn 204, RP017
 Phillips, Caleb 700
 Pi, Na MP006
 Picard, Christian 607, 608, MP036, RP020
 Pick, Frances WP068
 Pickard, Scott 517
 Pienaar, Danie RP037
 Pieper, Michael MP152
 Pierce, Eric TP031
 Pigatin, Livia MP189
 Pillard, David 506, TP126
 Pilli, Anne 227
 Pinkney, Fred 514, TP095, TP154
 Pinto, Caroline MP137
 Pipkin, Erik WP196
 Pittman, Henry 154, 155, MP047, TP005
 Pizzuro, Daniella TP177
 Place, Allen 469
 Place, Benjamin 564
 Plassmann, Merle 246
 Plata, Desiree WP081
 Plautz, Stephanie WP066
 Poda, Aimee 383, 746, 752
 Podgorski, David 212, 656
 Points, Gary MP014
 Poirier, David 256, WP181, WP194
 Poirier, Laurence MP101
 Poletika, Nicholas 34, 37, 38, 129
 Pollack, Sara 130, 131
 Pollock, Tyler RP040
 Ponton, Dominic 280
 Poon, Ying-Keung 619
 Popp, Brian 274
 Porter, Dwayne 208
 Porter, Kaitlyn 750
 Portier, Ralph 515, TP060
 Possidente, Bernard WP060
 Possidente, Debra WP060
 Posson, Michael 25, MP155, MP156
 Posthuma, Leo 706
 Poteat, Monica TP027
 Potter, Thomas 677
 Poulain, Alexandre 156
 Poulsen, Veronique 347, 724
 Pouzou, Jane 427
 Powell, Michael TP156
 Power, Jessica TP111
 Poynton, Helen 328, WP063
 Prabhu, Chitra MP057, WP189, WP202, WP211
 Pracheil, Brenda TP028
 Praetorius, Antonia TP104
 Prakash, Shwet 522
 Prats, Eva 366
 Presley, Steve 335
 Presser, Theresa TP195
 Pribil, Michael TP112
 Price, Cynthia 377
 Price, Oliver 572, 744, RP078, WP094
 Price, Paul 483
 Prince, Roger 12
 Proestou, Dina RP119
 Propper, Catherine TP035
 Prosser, Ryan 457, WP186, WP194
 Prowell, Cheryl 626
 Puckett, Keith 402
 Pucko, Monica WP175
 Pugh, Katie WP216
 Puglis, Holly 385
 Puglisi, Amy 227
 Purdon, Kathryn RP109
 Purdy, John 125, 462
 Putman, Jonathan 212, 656
 Putt, Arthur 608
 Pylatuk, Melanie RP091
 Pyle, Gregory 230, 302, 501, MP170, RP134, WP161, WP162

Q Qi, Hongxue 611
 Qiang, Liwen MP066
 Qiu, Rong-liang 160
 Quach, May RP091
 Quach, Thu 161
 Quinn, Brian TP160
 Quinn, Christina TP114
 Quinn, Cristina 293, 525
 Quinn, Michael 509, MP039
 Quinn, Shannon RP045
 Quinn Jr, Michael MP040
 Quinones-Rivera, Antonio 30

R R. Lead, Jamie 280, WP085
 Raby, Melanie WP181
 Radakovich, Olivier 369, TP104
 Rader, Kevin 438, 439
 Radford, Rosemarie 127
 Radke, Michael 455, RP101
 Radtke, Meghan MP236
 Raes, Martine 698
 Raftery, Tara 58
 Rahman, Sheikh RP085
 Raimondo, Sandy 442, RP062, TP192
 Rainwater, Thomas 636
 Rakestraw, Mariah MP211
 Rakocinski, Chet 226
 Rakowska, Magdalena MP017
 Raldua, Demetrio 366
 Ramirez Romero, Patricia TP046, TP139, WP198
 Ramírez-García, Jorge Javier WP030
 Ramos-Alcocer, Martín MP190
 Ramos-Morales, Fernando TP009
 Ramsdell, Howard TP211
 Ramstad, Svein 470
 Ran, Yong MP060
 Rana, Satshil TP091
 Rand-Weaver, Mariann 568
 Randolph, Eric MP028, MP172, RP113
 Rangel, Juliana 120
 Rankin, Michael 622
 Ranville, James 300, 303, 374, 513, MP111, TP196, TP211, WP084
 Rao, Balaji 82
 Rasio, Jonathan 97
 Ratnasoori, Wanigasekara Daya TP214
 Rattner, Barnett 47, 270, 273, 274, TP166
 Rawlings, Jane MP129, MP133, MP166
 Rawlings, Lee 60
 Rawson, Christopher WP150
 Raxter, Ian 206
 Ray, Collin MP118
 Rea, Anne 724
 Reardon, Delaney 578
 Reash, Robin 345
 Reategui-Zirena, Evelyn TP212
 Redman, Aaron 497, MP136, RP069, WP027, WP185
 Reed, Scott 206
 Reese, Barbara MP197
 Reese, Bill RP031, WP028, WP055
 Rego, Jessa RP017
 Reibach, Paul 121

Reible, Danny MP012, MP017, WP096
 Reichard, John WP216
 Reid, Brian 471
 Reilly, Timothy 731
 Reiner, Eric MP023
 Reiner, Jessica MP070, MP192
 Rendal, Cecilia 572, 744, RP078
 Rendas, Martina 202
 Rendon, Jaime TP006
 Resh, Vincent 315
 Reyes Portillo, Roberto MP117
 Reynolds, Erik 144
 Reynolds, Peggy 161, TP176
 Reynolds, Susan RP109
 Reynolds Reid, Kim TP129
 Reynolds, Tim WP143
 Rezende, Maria MP189
 Rheingans, Richard 287
 Rhoadeas, Jennifer 430, 603, RP061, WP103
 Rial, Eduardo 366
 Ribeiro Guevara, Sergio TP203
 Ricciardi, Karen 328
 Rice, Denise 665
 Rice, Fred MP037
 Rice, James 601
 Richard, Freddie-Jeanne 124
 Richard, Natalie 231
 Richards, David 3, 4, 5, 6, 7
 Richardson, Kevan MP234
 Richardson, Sarah 46
 Ricker, Robert TP053, TP055
 Ridenhour, Benjamin WP064
 Riegerix, Rachelle WP206
 Rigét, Frank MP068
 Riley, Benjamin
 Rindlisbacher, Alfred MP235
 Ringwood, Amy MP162, MP184, TP073
 Risk, David 339
 Ritter, Amy 643, WP210, WP221
 Ritter, Halle 601, TP177
 Rivera Cárdenas, Claudia TP135
 Rivière, Coraline 124
 Rizwan, Usman RP106
 Rizzo, Andrea TP203
 Roa, Florin MP011
 Roark, Shaun 531, 532, WP122
 Robel, Alix WP036
 Roberts, Aaron 107, 186, 219, 307, 308, 310, 313, MP108, RP056, TP191
 Roberts, Eric 127
 Roberts, Jeff MP008
 Roberts, John 308, 311
 Roberts, Justin WP184
 Roberts, Mike 688
 Roberts, Simon 78, 543, 659
 Roberts, Steve TP098
 Robertson, Cory 429
 Robinson, April 387
 Robinson, Joseph 643, WP221
 Robinson, Sarah 287, MP095, MP097, MP100
 Robinson, Serina RP113
 Robinson, Stacey 46
 Robinson, Suzanne MP124
 Robinson, William 328
 Robson, Matthew MP023
 Rock, Kylie 193
 Rockfellow, Daniel 464
 Rockel, Mark RP004
 Rodgers, John 422, TP016, WP190
 Rodgers, Ryan 212, 656
 Rodney, Sara MP148, MP149, WP068, WP075
 Rodricks, Joseph 30
 Rodriguez, Jorge WP145
 Rodriguez, Karen TP150
 Rodriguez Gil, Jose WP194
 Rodriguez Gil, Jose Luis 16
 Rodriguez-Fuentes, Gabriela RP130
 Rodriguez-Mozaz, Sara 326
 Roe, Amy 154, 602, MP047
 Rogers, Clint MP085, MP086
 Rogers, Holly 305, WP076
 Rogers, Kim TP107

AUTHOR INDEX

Rogers, William MP237
 Rohlman, Diana MP208, MP209, MP212
 Roland, Kathleen 698
 Rollerson, Chantal 630
 Romero-Romero, Rubi TP007
 Rosabal, Maikel 56
 Rosado-Berrios, Carlos MP107
 Rosal, Charlita 565
 Roseberry-Lincoln, Ann MP163
 Rosen, Gunther WP003, WP013, WP014
 Rosenblum, Laura 734
 Rosi-Marshall, Emma 488, 489
 Ross, Tahla 463
 Rossi, Mark 426, 428
 Rossi, Matt 121
 Rothenberg, Sarah TP024, TP033, RP108
 Rothman, Nathaniel 68
 Roug  , Valentin 678
 Rougeau, Benjamin 359
 Rouse, David TP004, TP157
 Roush, Kyle MP131
 Routtu, Jarkko WP064
 Rowland, Michael 584
 Rowland, Steven 212, 656
 Rowles, Bob WP044
 Roy, Jim WP159
 Roy, Sayanty WP064
 Ruden, Christina 687
 Ruden, Douglas WP060
 Rudisill, Catherine 430, RP061, TP134, WP103
 Rudy, Martina 498, WP159
 Ruelas Inzunza, Ernesto MP042
 Ruffle, Betsy 24
 Ruiz, Carlos 624
 Ruiz, Mercedes MP202
 Rupp, Richard MP145
 Russell, Amber 384, WP012
 Russell, Armistead WP168, WP169
 Russell, Brandon 282
 Russell, David TP006
 Russell, Mark MP065
 Russell, Robbin 441
 Rutkiewicz, Jennifer 424
 Rutter, Michael TP154
 Ryan, Adam 49, 50, 529, 533, MP110, MP116, RP105
 Ryan, Caitlin 214
 Ryan, Paul 534
 Ryti, Randall MP228

S Saah, David RP011
 Saal, Erin 515
 Saari, Gavin 21, MP085, MP086
 Saari, Travis RP088
 Saban, Lisa RP005
 Sabo-Attwood, Tara 287, MP095, MP097, MP100, MP102, RP127
 Sadaria, Akash 683, RP010
 Saed, Mohammad TP072
 Saeed, Suhur 418, 522
 Sahigara, Faizan MP132
 Saif, Amal WP067
 Saini, Amandeep 264, WP178
 Sajwan, Kenneth TP039, RP104
 Salamova, Amina 191, WP174
 Saleh, Navid MP097, MP102
 Salice, Christopher 635, MP073, RP075, TP212, WP062, WP197
 Salinas, Kelly WP103
 Salvito, Daniel 175, RP041, RP043, WP134
 Samaranayake, VA 88
 Samel, Alan 606, MP091, MP219, RP021
 Sample, Bradley 157, MP088
 Sampson, Christie MP076
 Sampson, Jennifer 696
 San Francisco, Susan 357
 Sanborn, Michael 622
 Sanchez-Arguello, Paloma RP121
 Sanchez-Melsio, Alexandre 326
 S  nchez-Meza, Juan Carlos WP030
 Sanchini, Andrea 375

Sanders, Rebel TP185
 Sanderson, Hans 62
 Sandhu, Reena WP216
 Sandoval, Kathia TP170
 Sandoz, Melissa WP209
 Sangster, Jodi 449
 Sani-Kast, Nicole 369, 376, TP104, TP108
 Sano, Aki RP106
 Santaella, Catherine TP106
 Santamar  a Ju  rez, Deisy MP117
 Santero, Nicholas 482
 Santo Domingo, Jorge TP100
 Santore, Robert 49, 50, 529, 533, 534, MP110, MP116, RP105
 Santoro, Federico RP026
 Santos, Elvira TP074
 Sanzone, Diane 518
 Sappington, Keith 665, 705, MP038
 Sarala, Roshni TP079
 Saranampour, Parichehr MP206, WP048
 Sarauer, Bryan MP185
 Sari, Mega TP023
 Sarr, Makhfousse MP020
 Sato, Masayuki RP063
 Satterfield, Barclay 648
 Saulnier, Amy WP053
 Saunders, David TP085, RP093, WP158
 Savard, Martine 404, WP157
 Sayers, Lee MP160
 Sayre, Phil TP191
 Scarano, Louis 174
 Schaefer, Ralf Bernhard 723
 Schaefer, Sabine 173
 Schaider, Laurel 558
 Schapaugh, Adam 539
 Schartup, Amina 340
 Scheibener, Shane 673
 Schellenberger, Steffen 485
 Schenck, Kathleen 734
 Scheringer, Martin 79, 369, 376, 425, TP104, TP108, WP037
 Scherpenisse, Peter MP018
 Schertzinger, Gerhard 145
 Schiavone, Kristina 548
 Schiff, Kenneth 318
 Schiffer, Stephanie 406
 Schirmer, Kristin 61, 183, 587, WP082
 Schlechtriem, Christian 294, TP113, TP115, TP116
 Schlekat, Christian 201, MP114
 Schlenk, Daniel 57, 307, 715, MP128, RP074, TP169, WP193, WP203
 Schlief, Billy 67
 Schmidt, Stine 173, WP135, WP195
 Schmidt, Travis 305, 319, 419, 488, 492, TP200, WP076
 Schmolke, Amelie 440, 446, WP214
 Schmutz, Josef 13
 Schnell, Sabine 295
 Schock, Tracey RP036
 Schoenfuss, Heiko 113, 115, 546, 548, 549, MP026, WP112, WP114, RP132
 Schoeters, Greet 162
 Schoff, Patrick 325, TP010
 Schoff, Judith TP150
 Scholz, Lukas 59
 Scholz, Nathaniel 23, 316
 Schreiber, Madeline MP138
 Schroeder, Anthony 117, 567, MP026, MP172
 Schroeder, Peter 114, 362, TP087, RP088, RP113
 Schroer, Hunter 85
 Schuler, Dominic 460
 Schuler, Lance MP222
 Schultz, Dayna MP185
 Schultz, Irvin 583, RP076, WP104
 Schultz, Melissa 548, 549
 Schultz, Sandra 47, 270, 273
 Schumacher, John 87
 Schumaker, Nathan 333, 444, 445, RP064, RP082
 Schuster, Jasmin 400, MP015
 Schwab, Eric 546

Schwenter, Jeffrey RP036
 Scott, David 635
 Scott, Erin 385
 Scott, Geoffrey 208, RP124
 Scott, Ricky MP020, TP184
 Scott, Shannon TP210
 Scott, William 119, MP085, MP086
 Scroggins, Rick 202, 629
 Seager, Thomas MP210, RP098
 Seaman, John TP199, TP204, TP205
 Sebasky, Megan MP032, MP092, RP046
 Sebastian, David 366
 Sebastian, Robert 293
 Secord, Anne 602
 Sedlak, Meg 192
 Segner, Helmut 294, TP113, TP115, TP116
 Seitz, Brandon TP110
 Selck, Henriette 298, RP041
 Selin, Noelle 526, 618, WP100
 Sellin Jeffries, Marlo 416, 512, MP131, RP112
 Semenzin, Elena 375
 Semones, Molly 738
 Semper, Connie WP029
 Sempier, Stephen 11
 Sengupta, Namrata 578, MP076
 Seo, Sung-Hee 555, TP140
 Seong, Won Joon 164
 Sepulveda, Marisol 182, MP224, MP239, RP120
 Sericano, Jose 152
 Servais, Pierre WP143
 Servos, Mark 711, MP025
 Sevanthi, Ritesh 82
 Seymour, Linda RP100
 Sgier, Linn TP093
 Shahmohamadloo, Rene S. 740
 Shaked, Shanna 206
 Shaller, Philip MP143
 Shang, Dayue 498, WP159, WP160
 Shapiro, Arthur MP226
 Shapiro, Carl 725
 Shappell, Nancy WP110, RP132
 Sharma, Bibek 606, MP223, MP238, RP021
 Sharma, Raman TP118
 Sharp, Simon 348
 Shaul, Nellie WP117
 Shaw, Joe WP065
 Shaw-Allen, Pat 130, 131
 Shea, Damian 452
 Sheehan, Patrick 25, MP155, MP157, MP158
 Sheesley, Rebecca WP176, MP199
 Sheldon, Kimberly WP072
 Shen, Longzhu 367, 413
 Shen, Xiaolong WP096
 Sherry, James 580
 Shevchuk, Lyudmila RP125
 Shi, Honglan 276, WP015
 Shi, Yu Tao RP034
 Shibata, Mark MP167
 Shim, Won Joon MP193, MP196, TP090
 Shin, Eun-su MP201, TP077, TP142
 Shin, Hwa Yoon RP123
 Shin, Hyesoo TP090
 Shine, Jim 558
 Shinn, Sandra MP238
 Shjegstad, Sonia 378, WP016, WP017
 Shoeib, Mahiba 264, MP015
 Shoemaker, Jody TP174, TP181
 Short, Terry 491
 Shotyk, William 403
 Shoults-Wilson, William 435
 Shrestha, Parmeshwar MP143
 Shuman-Goodier, Molly TP035
 Shunthirasingham, Chubashini MP059
 Shytikova, Larysa RP125
 Sibley, Paul 10, 256, 457, WP181, WP194
 Siciliano, Steven 554, WP029
 Siddiqui, Samreen 52
 Siegler, Katie RP017
 Sierra-Alvarez, Reyes 508
 Sikder, Rafid RP074
 Silas, Tatah WP129

Silberhorn, Eric 642, 644, 713
 Silva, Bianca TP182
 Silva-Sanchez, Cecilia RP127
 Silvestre, Frederic WP032
 Silvestre, Fr  d  ric 698, WP034
 Silvestre, Frederic 329, 395
 Simcox, Nancy 367
 Simini, Michael 510, WP001, WP002
 Simmons, Denina 580
 Simmons, Doug 222
 Simning, Danielle TP054
 Simon, Kendall 155, MP047
 Simonich, Michael 508, 751
 Simpson, Adam 420, TP201
 Simpson, Myrna 581, 582
 Simpson, Stuart 197
 Singh, Ankur 25, MP157, MP158
 Singleman, Corinna 390
 Sinnige, Theo 61
 Siriwardena, Dinusha 77
 Siu, May 400, WP155
 Sivry, Yann 373
 Skall, Daniel RP049, TP129
 Skeaff, James WP121
 Skelton, David 577
 Skipper, Sherry TP004
 Slayton, Dave 551
 Slomberg, Danielle 369, TP104, TP108
 Small, Troy RP053
 Smalling, Kelly 126
 Smedes, Foppe WP167
 Smirnoff, Anna 404
 Smith, Brian 168
 Smith, Daniel RP047
 Smith, Dave WP013
 Smith, E MP215
 Smith, Edwin TP138
 Smith, Emily 109
 Smith, Eric 549
 Smith, Greg WP128
 Smith, Gregory 346, WP125
 Smith, John TP027, RP109
 Smith, Ley RP127
 Smith, Loren 631, 680
 Smith, Martyn 68
 Smith, Philip WP209
 Smith, Rebecca 121
 Smith, Richard 381, 382, WP018
 Smith, Ross MP182
 Smith, Samantha 300, TP196
 Smith, Scott 51, 53, 146
 Smolders, Erik 557
 Smulders, Chantal 63
 Smyth, Shirley Anne WP177
 Snape, Jason 228, 574, 710, TP144, WP044, WP045
 Snider, Martin 161
 Snow, Daniel 449, WP035
 Snyder, Blaine TP138
 Snyder, Nathan MP087, MP090, MP092
 Snyder, Shane 66, 559
 So, Brandon WP059
 Soares, Amadeu 366
 Sobal Cruz, Mercedes MP117
 Sobek, Anna 455, RP101
 Sofield, Ruth TP038
 Sofield, Ruth M. 14, 111
 Sohn, Juhae WP205
 Solga, Andreas TP043
 Solis-Casados, Dora MP104
 Solomon, Keith 95, 180, 195, 297, 353, 456, 457, 686, TP117, WP194
 Solomon, Kip MP197
 Somers, Keith 407
 Son, Jino 749
 Son, Min-Hui 555, TP077
 Soni, Bhavneet WP035
 Sonne, Christian MP071
 Sorell, Tamara WP212
 Sorensen, Mary 724, RP048
 Soucek, David 419, 672, TP190
 Soudant, Philippe 311

Soulen, Brianne 107, MP108
 Sower, Gregory 168
 Spadoto, Mariangela TP182
 Sparham, Chris WP137
 Sparks, Daniel MP048
 Sparling, Donald TP154
 Spear, Philip 268
 Spencer, Christine WP177
 Sprague, Dan 47, 270
 Sproxberg, Julian 316
 Spyropoulos, Demetri 309
 Spyropoulos, Demetri 213, TP051
 Squillace, Anthony MP056
 St.Louis, Vincent 405
 Stadnicka-Michalak, Julita 587
 Stahl, Cynthia 726
 Stahl, Leanne TP138
 Stahl, Ralph RP031, TP147, TP158, WP021, WP028, WP055
 Stallard, Megan MP161, MP164, MP169
 Stanek, Shavonne TP167
 Stanier, Charles 527
 Stankus, Paul TP199, TP204
 Stanley, Jacob 414, 507, 573, 588, WP011, RP032, RP092
 Staples, Charles 140, RP110, WP111
 Stapleton, Heather 193, 194, 563, TP081, WP179
 Stark, John 23, MP140
 Starosta, Krzysztof TP106
 Staveley, Jane 10, 90, 91, 94, 138, 285, 606, 684, RP021, TP048, WP066
 Steeger, Thomas 665
 Steele, Baylor TP130
 Steele, W 367
 Steenson, Ross 626
 Steevens, Jeff 746, RP033, TP064, WP086
 Steevens, Jeffery WP189
 Steeves, Kean MP024, MP025, MP031
 Steigmeyer, August TP123
 Steinkey, Dylan 230
 Stenten, Christina MP197
 Stephan, Chady 356, TP101, WP085
 Stephens, Dane MP131
 Stern, Gary MP203, WP175
 Sternberg, Robin 62
 Stetefeld, Jorg MP019
 Stevack, Kathleen 256
 Stevens, Carolyn TP194
 Stevens, Kyle MP028
 Stevenson, Louise 277
 Stewart, Andrea 239, 240
 Stewart, Steven MP152
 Stieglitz, John 308
 Stinckens, Evelyn WP195
 Stinson, Jonah RP001
 Stoczyński, Lauren RP142
 Stoddart, Gilly MP055
 Stodola, Steve MP216
 Stoeckel, Donald 700
 Stoeckel, James 219
 Stoiber, Tasha 279
 Stoll, Dwight WP183
 Stone, Alex 429, WP036
 Stott, Lucy 295
 Stout, David WP010
 Strachan, William MP203
 Stransky, Chris 18, WP152
 Strickland, Timothy 677
 Streblow, William RP068
 Streissl, Franz 347
 Stringer, Colin MP078
 Strope, Cory 589
 Struch, Rachel TP055
 Struijs, Jaap 638
 Strynar, Mark 565
 Stubblefield, Bill 177, 312, MP116, TP057
 Stuchal, Leah TP098
 Studabaker, William 402
 Sturchio, Neil 82
 Størseth, Trond 470, 579
 Su, Guanyong 267, TP001, TP083
 Subramanian, Annamalai WP144
 Suedel, Burton 259, 517
 Sugatt, Richard MP013, MP216
 Suh, Sangwon TP063
 Sullivan, Connor 355
 Sullivan, Joseph 120, MP088
 Sullivan, Julia TP011, TP012
 Sullivan, Katherine TP129
 Sullivan, Kristie MP055
 Summers, Heather 692
 Sumpter, John 295, 568, 685
 Sun, Caoxin 618
 Sun, Jianxian 386, 499, RP093, RP111, TP085, WP108
 Sun, Mei 736
 Sun, Patrick WP059
 Sun, Ping TP133
 Sun, Yuanjing TP102
 Sunderland, Elsie 340, 617, 618
 Sunger, Neha 539
 Supowitz, Sam 683, RP010
 Supowitz, Samuel 314, RP015
 Sures, Bernd 145
 Surprenant, Maura 518
 Suski, Jamie 62, 603, MP154
 Suter, Glenn 137, 139
 Sutherland, Cary WP027, WP185
 Sutton, Rebecca 192, 737, TP167
 Sutton, Tanya TP035
 Suzuki, Amanda WP059
 Suzuki, Go WP144
 Suzuki, Noriyuki 707
 Sverko, Ed 270, WP155
 Svhalkova, Lenka TP015
 Swain, Edward 351, TP049
 Swank, Adam MP216
 Swanson, Heidi MP078
 Swanson, Penny RP076
 Sweet, Lauren 547, MP076
 Sweet, Len RP142
 Swiatek, Zuzanna MP229
 Swintek, Joseph 362, RP035
 Swope, Brandon 504
 Swyers, Nicholas MP183
 Syberg, Kristian 251
 Szita Toth, Klara MP148
 Szymanski, Jennifer 441

T Tabares-Alavez, Alberto TP006
 Tadele, Kidus MP069
 Takaguchi, Kohki MP050, MP051
 Takahashi, Shin WP144
 Takanobu, Hitomi TP008, RP131
 Takeshita, Chie 214, 308, 310, 313, TP053
 Takiguchi, Mitsuyoshi MP052, TP075
 Tal, Tamara 571
 Tamura, Ikumi 712
 Tan, Cecilia 408, 409
 Tanabe, Kiyoshi WP119
 Tanabe, Shinsuke MP003, MP050, MP051, MP052, MP188, MP191, TP075, WP144
 Tang, Dawei WP137
 Tang, Song 386, MP185, RP086, RP093, RP111, RP115, WP106
 Tang, Zhenxu 681
 Tanguay, Robert 22, 708, 751
 Tanir, Jennifer TP131
 Tarazona, Jose V. 180
 Tarrant, Darcy TP079
 Tatarazako, Norihsa 712, TP008, RP131
 Tate, Mike 237, 240, 241
 Taulbee, Keith 717, WP125, WP128
 Taylor, Al 551
 Taylor, Allison MP128
 Taylor, Joseph TP098
 Taylor, Lisa 202, 535, 629
 Tear, Lucinda 534, MP110
 Técher, Romy 268, 269
 Teed, R. Scott 38, MP146, MP147, MP222
 Teed, Scott 34, MP149
 Teel, Chen TP047
 Teeter, Jerold Scott 713
 Teixeira, Camilla 195

Tejeda-Vega, Samuel WP030
 Temkin, Alexis 213, 309, TP051
 Templeton, David WP196
 Terletska, Ganna MP027, RP125
 Tessier, Céline 535
 Tettenhorst, Daniel TP174
 Tewolde, Daniel WP145
 Thackeray, Nicole WP123
 Thackray, Colin 526, 618
 Thakali, Sagar WP021, WP028, RP031
 Tharaud, Mickaël 373
 Thaysen, Clara WP178
 Theel, Heather 377
 Theodorakis, Christopher RP128
 Thera, Jennifer 341
 Thistle, Harold 135
 Thoeny, William 419
 Thogmartin, Wayne 441
 Thomas, Courtney MP017
 Thomas, Dylan 303
 Thomas, Kent 483
 Thomas, Kevin MP234
 Thomas, Linnea 115
 Thomas, Paul MP132
 Thomas, Russell 9, 394, TP086
 Thomas, Susan 609
 Thompson, Jay MP008
 Thorbek, Pernille 446
 Thornburg, Lydia 97
 Thorne, James MP226
 Thornton, Cammi TP064
 Thornton, Leah 416, 512, RP112
 Tichenor, Nicole 650, RP099
 Tickner, Joel 431
 Tidwell, Lane WP208
 Tierney, Keith WP164
 Tillitt, Donald 391, 392, WP192, WP206
 Tingey, Christopher MP197
 Tirrell, Leena MP033
 Tjeerdema, Ronald 204, RP017
 Tili, Ahmed 494
 Tobias, Craig 381, 382, WP018
 Tobias, David 178, 372
 Tobiason, Scott 533
 Toler, Kelli RP068
 Toll, John 533, 627, 693
 Tollesen, Knut Erik 61
 Tolls, Johannes 710, TP144
 Tominaga, Nobuaki WP149
 Torelli, Marco 188, MP098
 Torralba-Sánchez, Tiffany RP059
 Torres-Cancel, Kevin 746, 752
 Toteu Djomte, Valérie WP116
 Toyota, Kenji RP131
 Trapp, Stefan 84
 Traudt, Elizabeth 300, 303, MP111, TP196
 Trauscht, Jacob MP197
 Trego, Marisa 357
 Trinh, Son Bao 471
 Tritt, Maja 530
 Trnovec, Tomá_ 162
 Trouborst, Lennart 73
 Trowbridge, Kirsten 211
 Trowbridge, Philip WP151
 Trudeau, Vance 46
 Trudel, Marc RP109
 Trumble, Stephen TP185
 Truong, Jimmy WP173
 Truong, Lisa 751
 Tseng, Chi-Yen 750
 Tsui, Martin TP018
 Tsui, Martin Tsz-Ki 150
 Tsukada, David 260
 Tsyusko, Olga 187, 371
 Tucker, William 602
 Tufi, Sara 576
 Tuit, Caroline 625, MP220
 Tunkel, Jay 430, 600, 603, RP061, WP103
 Tuominen, Lindsey TP044
 Turaga, Uday 335
 Turnbull, Duncan 30
 Turner, Carrie 745

Turner, Liz WP056
 Turpin, Barbara WP171
 Tuttle, George 40
 Tweedy, Brent WP051
 Tyler, Charles 574

U Uchida, Masaya WP149
 Udagama, Preethi TP214
 Udebuani, Angela TP036, WP069, WP129
 Uhlig, Kelley TP161
 Ulrich, Elin 565
 Umbuzeiro, Gisela MP174, MP177
 Unger, Michael MP179, TP095
 Unice, Kenneth MP053
 Uno, Seiichi RP024, RP025
 Unrine, Jason 187, 371, 435
 Uppal, Karan 68
 Urban Ramírez, Jorge 357
 Urlacher, Elodie 124
 Usenko, Sascha MP199, TP185, WP176
 Usrey, Faron MP119
 Uyaguri Diaz, Miguel 208

V Vahdat, Nader TP173
 Vajda, Alan 327
 Vala, David MP197
 Valberg, Amelia 340
 Vale, Carlos MP142
 Valenti, Ted 198, RP021
 Valenti, Theodore 606
 Vallerio, Daniel 483
 Vamshi, Raghu MP032, RP046
 van Aggelen, Graham 632, MP033
 Van Buskirk, Megan 13
 Van de Bor, Margot 162
 van de Meent, Dik 638
 van den Brink, Paul 463
 Van der Grinten, Esther 638
 Van Der Kraak, Glen 503, 538
 van der Veen, Ike 485
 Van der Vliet, Leana 535, 629
 van der Wal, Leon 294, TP113, TP115, TP116
 Van Geest, Jordana 720
 Van Genderen, Eric 597, WP131
 van Gheluwe, Marnix 201
 Van Houtven, George 727
 Van Hoven, Raymond MP065
 Van Kessel, Andrew WP200
 Van Langenhove, Kersten WP143
 Van Loco, Joris WP143
 Van Metre, Peter 290, 319, RP022, WP076
 Van Rossum, Thea RP089, RP091
 van Vliet, Heidi MP226
 Van Zelm, Rosalie 638
 Vander Pol, Stacy MP192
 Vanderkooy, Matt MP008
 Vandermarken, Tara WP143
 VanDervort, Darcy 559
 Vandever, Mark 126
 Varshavsky, Julia 161, MP213
 Vartanian, Ariane 188
 Vasquez, Luis 165
 Vassilenko, Katerina MP180
 Vaughn, Caryn WP051
 Vázquez-Euán, Roberto RP130
 Vebrosky, Emily RP013
 Vedagiri, Usha 511, 626
 Veldhoen, Nik 575, 632
 Venables, Barney 416, 421, 512, RP112
 Venier, Marta 191, WP174
 Venuti, Vittoria MP112, TP197
 Venzmer, Joachim TP133
 Verdin, Alyssa 53
 Verdonck, Frederik 45
 Vergauwen, Lucia 567, WP195
 Verma, Vishal WP168, WP169
 Vermeulen, Roel 68
 Vernon, James 619
 Verreault, Jonathan 268, 269
 Verslycke, Tim TP129, TP137, TP193
 Vey, Matthias RP043

AUTHOR INDEX

Vial, Estelle 476
 Vicent, Teresa 326
 Vidal-Dorsch, Doris E. 705
 Vieira, Eny MP198, TP182
 Vighi, Marco 180
 Vignet, Caroline 500
 Vignier, Julien 311
 Vigon, Bruce 10
 Vijayasarathy, Soumini MP227
 Villa, C. MP227
 Villeneuve, Daniel 114, 116, 117, 327, 361, 362, 363, 412, 567, 569, 571, 577, 701, 730, 731, MP026, MP028, MP038, MP172, RP088, RP113, TP087, TP186, WP102
 Vinas, Natalia 116, 366, 414, 573, 588, 701, 746, 751, MP026, RP092, RP127, TP064, WP101
 Vincent, Melissa 31
 Vinhateiro, Nathan 518
 Vinod, Divya 81
 Vlahos, Penny 381, 382, WP018
 Voegelin, Andreas 718
 Vogel, Jason TP136
 Vogelbein, Wolfgang TP095
 Vogler, Bernadette 563
 Voigt, Astrid 553
 Voisin, Anne-Sophie 395, WP034
 Volberg, Vitaly 25, MP158
 Volety, Aswani 308, 311
 Voloshina, Maria 450
 Volz, David 58
 von Goetz, Natalie 615
 von Niederhausern, Valentin 61
 von Stackelberg, Katherine 724
 Von Wallmenich, Theo 464
 Voorhees, Jennifer 204, RP017
 Voros, Craig 346, WP125, WP128
 Vosnakis, Kelly 24
 Voutchkova-Kostal, Adelina 367, 413
 Vriens, Bas 718
 Vu, Hung 17
 Vukov, Oliver 53

W Waetjen, David MP226
 Wagman, Michael RP009
 Wait, Monica RP009
 Waite, Ian 319
 Waits, Eric RP119
 Waldron, Marcus 732
 Walker, Douglas 68
 Walker, John 10
 Walker, Rachael TP044
 Wallis, Lindsay
 Wallsgrave, Natalie 274
 Walters, David 253, 292, 419, 465, 488, 492
 Walters, Lynn TP150
 Walton, Barbara MP215
 Waltzak, Tom MP102
 Walubita, Maffalo 278
 Wambaugh, John 394
 Wammer, Kristine 640, WP183
 Wang, Bingxuan 424, 426, 428, 484
 Wang, Bronwen 237
 Wang, Jiafan 606
 Wang, Jingjing WP084
 Wang, Mao RP086
 Wang, Na 210
 Wang, Ning 75, 610, TP190, TP192, TP215, TP216
 Wang, Pei-Fang 379
 Wang, Qian MP195
 Wang, Rong-Lin 701
 Wang, Shaopo WP115
 Wang, Wei 159
 Wang, Xiaowa 195, 343, 405, TP041
 Wang, Ying 398
 Wang, Yujue 83, MP061
 Wang, Yunzhu TP176
 Wang, Yusong 85
 Wang, Zhanyun 79, WP037
 Wang, Zhen 100
 Wang, Zhendi 500

Wang, Zhongying 748
 Wania, Frank 525, 616, WP090, WP091
 Wannaz, Cedric WP094
 Warby, Richard 359
 Ward, J. Evan 282, TP070
 Ware, Lee MP187
 Wargo, Joseph TP171
 Warne, Michael 713
 Warren, Christopher 418, 522
 Warren, Sarah MP216
 Washington, John 178
 Watanabe, Haruna TP008, RP131
 Watanabe, Izumi 100, WP126
 Watanabe, Karen 363, 584, 588, WP104
 Wathen, John TP138
 Watkins, Preston TP188
 Watry, Mary Kay TP109
 Watson, Aaron 469
 Watson, David TP030, TP031
 Webb, Kathleen 99
 Webb, Rebecca WP040
 Webb, Sarah 515, TP061
 Weber, George MP167
 Weber, Lynn MP170, WP033
 Weber, Rodney WP168, WP169
 Weber, Roland 425
 Webster, Eva 613
 Wee, June RP096, TP208, WP026, WP070
 Weeks, John 294, MP072, TP113, TP115, TP116
 Wegesser, Teresa 562
 Wehmeyer, Ken 741
 Wei, Lan TP153
 Wei, Yanli 519, 611, RP007
 Weij, Liesbeth 585, MP227
 Weinstein, John 244, 247, TP163
 Weir, Scott 635
 Weisberg, Stephen 208
 Weiss, Charles 752
 Weiss, David MP065
 Weissbard, Ron WP211
 Welch, Allison 634
 Weller, David WP117
 Wells, Randall MP074
 Weltje, Lennart 608, 713
 Wen, Xin MP138
 Wender, Ben RP100
 Wenning, Richard RP004, RP048
 Wentsel, Randall 91, 689
 Wentzel, Alexander 470
 Wepener, Victor 463
 Werner, David 169, 471
 Wernsing, Paul 465
 Wertz, Hope 244, TP163
 Wesner, Jeff 492
 West, Danielle WP015
 Westfall, Josh TP213
 Weston, Donald WP063
 Wetmore, Barbara 589
 Wetzel, Todd 28
 Weyers, Arnd TP043
 Whale, Graham 63, 179, 700, 707, WP043, WP044
 Whaley, Janet 285
 Whalin, Lindsay 626
 Whatling, Paul 129, 630, MP147, MP148, MP149
 Wheeler, James R. 540
 White, Andrew 572
 White, Sarah Jane 558
 Whitehead, Andrew TP055
 Whitehead, Kenia WP099
 Whitehouse, Paul 706
 Whitfield Aslund, Melissa 681, RP018
 Whittaker, Margaret 424, 484
 Wickramasinghe, Deepthi TP214
 Wickstrom, Geoff 622
 Wickstrom, Mark 554
 Wiener, James 239, 240
 Wierda, Michael TP005
 Wiggert, Jerry 226
 Wijdeveld, Arjan WP167
 Wikfors, Gary TP070

Wiklund, Johan 343
 Wilbanks, Mitchell 414, 507, 573, 584, 588, WP011, RP032, RP092
 Wilcut, Lars 530
 Wild, Bill 379, 380, TP162
 Wilkens, Justin 517
 Wilkins, D'Ann TP210
 Wilkinson, Lesley 54
 Wilkinson, Phil 636
 Willacker, James 239, 240, 241, TP109
 Wille, Guillaume 373, TP105
 Willett, Catherine 536
 Willett, Kristie TP064
 Williams, Brian MP138
 Williams, Jonathan RP106
 Williams, Kim 48
 Williams, Lisa 272, 551
 Williams, Mark WP170
 Williams, Mike 229, 545
 Williams, Richard 707
 Williams, Spencer 10, 29, 290, 367, MP159
 Williams, Tony TP002, MP044
 Williams, W. Martin 643, WP210, WP221
 Williamson, Dean TP155
 Williamson, Jacob 513, MP111, TP211
 Williamson, Mary MP074
 Willis, Alison MP214, MP218, WP216
 Willis, Chelsea 405
 Willis-Norton, Ellen TP167
 Williston, Debra RP030
 Willmarth, Josh MP208
 Willming, Morgan RP062
 Wilson, Daniel 393
 Wilson, Diane WP060
 Wilson, Joanna 231
 Wilson, Jordan 87, MP062
 Wilson, Madeline MP014
 Wilson, Monica 11
 Wilson, Peter 62
 Wilson, Tomoko TP035
 Wilson, Vickie 734
 Winchell, Michael 36, 37, 134, 681, MP146, MP148, MP149, RP018
 Windfeld, Ronja RP041
 Winfield, Zach TP185
 Winkel, Lenny 718
 Winkelman, Dana 327
 Winkler, Paul 655
 Wirth, Ed 203, 208
 Wiseman, Clare 163, MP005
 Wiseman, Steve 386, 388, 389, 499, MP024, MP025, MP031, MP185, RP093, RP111, TP085, WP067, WP105, WP106, WP107, WP158, WP200
 Wiseman, Steven 496
 Witt, Gesine 173
 Witters, Hilda 61
 Woelz, Jan 140
 Wolf, Douglas MP126
 Wolf, Fred 627, WP213
 Wolfe, John 745
 Womack, Faith 630, WP066
 Wong, Catherine TP111
 Wong, Charles 266, 450, 451, MP011, RP014, WP142
 Wong, Eva 372
 Wong, Fiona MP203, WP175
 Wood, Chris 51, 304
 Wood, Christopher 671
 Wood, Stephen 616
 Woodall, Ben 308, 311
 Woodburn, Kent 298
 Woodley, Christa WP013
 Woodman, Samuel 230
 Woodruff, Tracey MP004, MP213
 Woodruff, Tracy WP020
 Wooten, Kimberly 357, WP209
 Wormington, Alexis 186
 Woudneh, Million TP076
 Wray, Austin MP076
 Wren, Ian TP167
 Wren, Jon MP143
 Wright, Kevin 682, MP090

Wright, Moncie 233, TP068
 Wright, Tracy TP202
 Wu, Fan 275
 Wu, Qian MP001
 Wu, Shimin 559
 Wu, Wen-Jing RP066
 Wu, Xianai 121
 Wu, Xiaoqin WP146
 Wu, Yan 737, WP118
 Wyatt, Kimberly 419
 Wyatt, Lauren TP021

X Xi, Chuanwu 206
 Xia, Huan MP127
 Xia, Menghang TP086
 Ximba, Bhekumusa 102, 454
 Xu, Feng 616
 Xu, Fu-Liu MP075, RP066
 Xu, Genbo TP169, WP193
 Xu, Guizhi TP153
 Xu, Hongyan MP173
 Xu, Tianbo 198, MP034
 Xu, Yan 209

Y Yager, Tracy 453
 Yamamoto, Hiroshi 712
 Yamamoto, Yasuo MP051, TP075
 Yan, Feng 98
 Yan, Songjing MP017
 Yan, Wang 98
 Yanagita, Masashi 653
 Yang, Chun 500
 Yang, Dorothy 657
 Yang, Shaohai TP153
 Yang, Woojin WP057
 Yang, Xinyu 651
 Yang, Yun-Ya 453
 Yao, Zongli 308
 Yassinskyi, Valentin 649
 Yates, Brian MP237
 Yazdani Sadati, Mohammad Ali TP065
 Yeardley, Roger 254, 257
 Yee, Donald 477
 Yeh, Andrew 118
 Yeh, Greg MP004
 Yeung, Leo 76
 Yim, Un Hyuk MP193, TP090
 Ying, Guang Guo 546
 Ying, Guang-Guo 205
 Yokota, Kuriko TP023
 Yokoyama, Nozomu MP052
 Yonkos, Lance 514, MP179
 Yoo, Jean MP050, MP051
 Yoon, Hakwon MP096
 Yoon, Subin MP199, WP176
 Yoon, Young-Jun TP084
 Yost, Alexandra 416
 Yost, Erin 364
 Yost, Lisa 30
 Yost, Michael 427
 You, Jing 519, 611, RP007
 Young, Graham RP076
 Young, Jade TP014
 Young, Thomas RP102
 Youngman, Sydney MP161, MP164, MP169
 Yu, Fahong RP127
 Yu, Hongxia RP115
 Yu, Lee WP083
 Yu, Shuangying TP205
 Yu, Shuo RP051
 Yu, Xiaodan TP024
 Yu, Yu 486
 Yuan, Hongda MP025
 Yuan, Yuan WP015
 Yurche, Valerie TP125

Z Zabeo, Alex 375
 Zaccone, Claudio 403
 Zadlock IV, Frank TP092
 Zahner, Holly 642, 644
 Zajac, Rachel MP109, TP155

Zalouk-Vergnoux, Aurore MP101
 Zamora-Almazan, Jessica TP135
 Zaoui, Farid 395, WP034
 Zaruk, Donna 270
 Zaunbrecher, Virginia 599
 Zawar, Noureen 163
 Zee, Jenna 388, WP106
 Zeeman, Catherine MP225
 Zelkan, Alexis 121
 Zemo, Dawn 562
 Zhang, Baohong MP200
 Zhang, Carl 649
 Zhang, Daian MP060
 Zhang, Jiaru 601, TP129
 Zhang, Jonathan WP137
 Zhang, Junjie 519
 Zhang, Leiming 400
 Zhang, Luoping 68
 Zhang, Qiang TP087
 Zhang, Shiju WP114
 Zhang, Tao 160
 Zhang, Xianming 617, 618
 Zhang, Xiaohui RP086
 Zhang, Xiaowei 710, TP090
 Zhang, Yahui WP024
 Zhang, Yanqiong TP062
 Zhang, Yanxu 617, 618
 Zhang, Yifeng 403
 Zhang, Yun MP030, WP047
 Zhao, Lixia WP024
 Zhao, Shizhen 546
 Zhao, Shuyan WP024
 Zhao, Yikun WP081
 Zheng, Lei 668, RP070
 Zhong, Guowei MP067
 Zhong, Harry RP009
 Zhou, Dongxu MP064
 Zhu, Lingyan MP066, WP024
 Ziccardi, Linda M. TP168
 Ziegler, Susan 339, TP025
 Zimmerman, Julie 367, 413
 Zimmerman, Marc 732
 Zimmermann, Sonja 145
 Zorina-Sakharova, Kateryna MP027, RP125
 Zorrilla, Leah 539, 540
 Zorzano, Antonio 366
 Zota, Ami MP004, MP213
 Zuellig, Robert 490
 Zupanic, Anze 587, 718, TP093
 Zushi, Yasuyuki WP119
 Zwart, Nick 735

AFFILIATION INDEX

A A.V.Bogatsky Physico-Chemical Institute MP027 A.V. Dumansky Institute of Colloid Chemistry and Water Chemistry MP027, RP125
AAAS USEPA TP191
Aarhus University 62
Aarhus University/AU Arctic Research Centre MP068, MP071
Abacus Consulting Services Ltd. 125, 462
ABC Laboratories WP215
ABS Materials Inc. 265
Abt Associates 480, TP052
Academy of Sciences of Czech Republic TP015
Acadia University 149, 339, 341, TP025, TP034, TP194
ADAMA 129, MP146
Advanced Industrial Science and Technology 694
AECOM 24, 222, 511, 518, 612, 622, 626, RP031, TP147, TP158, TP159, TP193, WP021, WP028, WP054, WP055
AECOM Environment 222, 511, 518
Agilent 65
Agilent Technologies 657
Agroscope 347
AIST Tsukuba West 694
Aix-Marseille University 369, TP104
Akzo Nobel N.V. TP133
Alberta Environmental Monitoring, Evaluation and Reporting Agency TP111
Allegheny College MP232
ALLETE Energy TP044
Alpha Analytical 432
Alterra and Wageningen University 463
Alterra Wageningen University and Research Centre 89, 347
AMEC Earth & Environmental 18, WP152
American Chemistry Council 140, 481
American Cleaning Institute 29, 30, 175, 741, MP159, RP046
American Electric Power 345
Anchor QEA, LLC 469, 619, 620, TP158, WP054, WP196
ANSES 347, 724
ANSTO 81
Applied Exomics 572
Applied Pharmacology & Toxicology, Inc. 539, 541, 660
AquaTox Testing & Consulting Inc. 202
Aquila Conservation & Environment Consulting MP042
ARC Arnot Research & Consulting 84, 525, 586, MP059, WP089, WP090, WP132, WP136, WP138
ARCADIS 45, 300, 303, MP111, MP125, TP196
Arcadis U.S., Inc. 45, 628, MP125, WP218
ARCHE 45, 201, 553, 557
Ardea Consulting 120, MP088
Ariake National College of Technology WP149
Arizona State University 314, 683, MP210, RP010, RP015, RP098
Arkansas State University 104, 359, 729, MP103, MP107, MP119, MP168, MP175, WP020
Army Institute of Public Health WP170
Arnold & Porter LLP 692
Arnot Research & Consulting Inc. 291, WP135
Assessment Technologies, Inc. 140, RP110, WP111
AstraZeneca 295, 568, 574
AstraZeneca UK Ltd. 228, 574, 710, WP044, WP045, TP144
ASU Ecotoxicology Research Facility MP103, MP168
Atlantic Ecology Division, USEPA RP079, RP119
ATSDR MP216
Auburn University 219
AXYS Analytical Services Ltd. 575, 580, TP076

B Badger Technical Services 362, RP035, TP206
Ball State University 243, MP081, RP067, WP049
Baltimore County MP152
Barr Engineering Co. TP044
BASF Agriculture Soutions 606
BASF Corporation 608, TP048, WP066
BASF SE 291, 347, 608, 713, MP018, RP021, TP133, WP220
Battelle 700, MP013
Battelle Memorial Institute 357, 700
Battelle Northwest Laboratories 583, RP076, WP104
Bawak Aruk Ojong WP023
Bayer CropScience 92, 120, 129, 140, 198, 347, 537, 539, 540, 606, 608, 681, 688, 713, MP034, MP145, RP018, RP021, TP043, WP066
Baylor College of Medicine TP033
Baylor University 10, 21, 29, 119, 230, 233, 248, 288, 290, 367, 750, MP085, MP086, MP159, MP199, TP068, TP071, TP130, TP185, TP188, WP041, WP061, WP116, WP176
bbe Moldaenke GmbH 188, MP082

BC Centre for Disease Control MP005
BC Genome Sciences Centre 632
BC Ministry of Environment MP033, RP091
Beijing Normal University 694
Beijing University of Technology TP102
Bemidji State University 106, TP110
Benemérita Universidad Autónoma de Puebla MP117
Bigelow Laboratory for Ocean Sciences TP055
Biodiversity Research Institute 240, 242
Bioforsk WP147
Biosphere Solutions 401
Birla Institute of Technology & Science, Hyderabad Campus 753
Blankinship Associates Inc. MP088
Borealis Environmental Consulting Inc. WP009
Bowdoin College WP148
BRGM 369, 373, TP104, TP105, TP108
Brigham Young University 5
British Geological Survey 554
Brock University MP023
Brown and Caldwell WP212
Brown University 748
Brunel University 295, 568, 685
Brunel University London 688
Butler Middle School MP197

C C.I. Agent Storm Water Solutions TP172
Ca' Foscari University of Venice 375
CALIBRE Systems, Inc. WP017
California Dept of Pesticide Regulation 39
California Dept of Toxic Substances Control 26, 161, 695, MP004, TP082, TP079, TP127, TP128, TP176
California EPA 161, MP004, MP045, TP079, TP082, TP176, RP017
California-Minnesota Honey Farms 127
Caltech WP171
Calvin College 272
Canadian National Railway Co. WP009
Canadian Red Cross RP106
Cancer Prevention Institute of California 161, TP176
CanmetMINING WP121
Cape Peninsula University of Technology 102, 454
CAPIM 17, 348, MP141
Cardno RP052, TP132
Cardno ChemRisk MP053, MP207
Cardno Entrix 440, WP214
Carleton University 267, MP068, MP071, TP001, TP040
Carleton University and Environment Canada 350
Carnegie Mellon University 370
Carollo Engineers MP085, MP086
Carroll Concerned Citizens MP209
Cary Institute of Ecosystem Studies 488, 489
Catalan Institute for Water Research ICRA 326, TP037
CB&I Federal Services 734
CDM MP221
CDM Smith 237
Cedar Key Seafood Association TP098
CEERD-EPR 383, 517, 624, 746, 752, RP032, TP064, TP121, WP031
Cefas WP044
Cefic TP133
CEHTRA SAS MP132
Centers for Disease Control and Prevention 97
Centre for Ecology & Hydrology Maclean Building 707
Centro Atómico Bariloche TP203
Centro de Investigación Príncipe Felipe 576
CEREGE TP106
CERES Locustox MP020
CH2M Hill 464, 719, MP058, MP109, TP155
Chalmers University of Technology 485, 574
Chapema Environmental Strategies Ltd 721
Chemical Computing Group 409
Chemical Management Associates LLC 661
Cheminova AS 630
Cheminova, Inc. 129, 630, MP147, MP148, MP149, WP066
Chemours MP065
ChemRisk RP011
Chesapeake Bay Foundation MP179
Chevron Energy Technology Company 562, 724, RP052, TP132
Chevron Environmental Management Co. 157
Chiba Institute of Technology 358, MP021, MP022
Chiba University MP051
Chinese Academy of Sciences 205, 260, MP016

Chinese Research Academy of Environmental Sciences 398, 742, WP024
Chonbuk National University RP094, RP123, RP129
Chungbuk National University RP094, RP123, RP129
CINVESTAV Unidad Mérida RP103
CIRAD TP106
CIRSEE Suez Environment 369
City of Boulder TP175
City of San Diego MP163
Clarkson University 77, 342, 566, WP118
Clean Production Action 426, 428
Clemson University 154, 250, 281, 310, 422, 547, 578, 646, MP047, MP063, MP076, MP121, RP072, RP142, TP016, TP066, TP067, WP190
CNRS/Aix-Marseille Université 369, TP104, TP108
CNRS/CEA/Aix-Marseille Université TP106
CNRS/UPPA, Laboratoire de Chimie Analytique Bio-Inorganique et Environnement 56
Coastal Bend Bays & Estuaries Program 271
Coastal Monitoring Associates MP057
Colegio de Postgraduados MP117
Colgate-Palmolive Company 542, WP219
College of Charleston 244, 634 TP163
College of William & Mary MP179, TP095
College of William & Mary VIMS WP191
College of Wooster 548, 549
Colorado Parks and Wildlife 240, TP211
Colorado School of Mines 78, 189, 300, 303, 374, 513, 543, 544, 655, 659, MP111, TP196, TP211, WP084
Colorado State University 327, 453, 490, 513, MP226, TP211
Colorado State University-Pueblo WP040
Columbia University 262
Compliance Services International 36, 37, 129, 198, 606, MP145, WP078
Conestoga Rovers & Associates RP053
CONICET 315
Copperbelt University 278, WP172
Core6 Environmental Ltd. 622
Cornell University 82, 650
COSIA 407, MP165
Covington Civil and Environmental TP179
Cox Honeyland 127
CRA, Inc. RP047
Cranfield University 699
CSC 227, TP138, TP150
CSIC - Spanish National Research Council 326, 366, TP037
CSIRO 229, 545, 552, 593
CSIRO Land and Water 197, 552, 705
CUNY Graduate Center 390
CUNY Graduate Center and Queens College 390
Curtin University WP150
Czech Academy of Science TP015

D Dakota State University TP080
Dalhousie University TP194, WP067, WP090, WP093, WP136
Dan River Basin Association MP138
Dartmouth College RP079
Delaware DNREC-SIRS 467
DELTARES WP167
Dept for Environmental Food & Rural Affairs 688
Dept of Civil & Env Engineering 368, MP138, RP085
Dept of Fisheries & Oceans WP160
Dept of Environmental Protection MP212
Discovery Place, Inc. MP162
Dow AgroSciences LLC 34, 37, 38, 129, 540, 725, WP066, WP215
Dow AgroSciences Italia srl 347
Dow Corning Corporation 294, 298, RP028, TP113, TP115, TP116
Draper Park Middle School MP197
DSITI 713
Duke University 78, 193, 194, 215, 249, 284, 365, 489, 495, 543, 563, 659, 725, 750, MP099, TP021, TP071, TP081, WP081, WP179
Duke University Nicholas School of the Environment 193, MP099, TP096
DuPont 75, 294, 349, 690, TP047, TP048, TP113, TP115, TP116, WP028, WP053
DuPont Crop Protection 347, 606, MP087, MP090, MP091, MP092, MP219, RP021, WP066
DuPont Haskell MP065
Duquesne University 71

E E.I. DuPont de Nemours and Company RP031, RP088, TP147, TP158, WP021, WP028, WP054, WP055
 EA Engineering, Science, and Technology, Inc. 29 MP159, TP125, TP156
 EAS EcoChem GmbH WP080
 East Carolina University MP200, RP114, TP062, TP099, WP079
 East Tennessee State University 91
 Eastern Mediterranean University TP180
 Eastman Chemical Company 648
 Eawag Swiss Federal Institute of Aquatic Science and Technology 61, 183, 494, 587, 707, 718, TP093, WP082
 Ebonyi State University TP036
 EBRC Consulting GmbH 553
 ECETOC 707, WP044
 Eco Modeling 226
 ECOFIN 402
 Ecolab Inc 30
 Ecological Risk, Inc 157, MP088
 Ecological Society of America 723
 EcoMetrix WP052
 ECT Oekotoxikologie GmbH 710
 Edgewood Chemical Biological Center 510, WP001, WP002
 EFSA 347
 Ehime University MP003, MP050, MP051, MP052, MP188, MP191, TP075, WP126, WP144, WP149
 Elanco Animal Health, a division of Eli Lilly and Company 713
 Eli Lilly and Company 176
 ElkhartSouth Bend Aquatic Community Monitoring Program RP120
 Emory University 68
 EMR, Inc. RP035, TP206
 Entox 585, MP227, RP101
 Environet, Inc. 378, WP016, WP017
 Environment Agency UK 706, 707, 725
 Environment Canada 19, 43, 44, 46, 47, 48, 54, 156, 170, 195, 196, 202, 264, 267, 268, 269, 270, 274, 292, 337, 343, 344, 350, 389, 400, 405, 457, 498, 500, 503, 535, 561, 580, 621, 629, 632, 664, 679, 704, 707, MP015, MP016, MP025, MP033, MP042, MP044, MP049, MP068, MP071, MP074, MP203, RP014, RP038, RP054, RP095, TP001, TP002, TP040, TP041, TP083, TP111, TP131, WP068, WP071, WP073, WP089, WP138, WP154, WP155, WP156, WP159, WP160, WP166, WP173, WP175, WP177, WP178, WP186, WP194, WP207
 Environmental & Turf Services, Inc. 10, 94
 Environmental Resources Management 522
 Environmental Studies Center 418
 EnviroPlanning WP050
 Enviross 463
 Environmental Chemistry Laboratory TP079
 EPFL - Swiss Federal Institute of Technology 587, MP139
 EPRI 345, 674, 675
 Equilibrium Environmental Inc. 417
 ER2 140, 540, 542, WP219
 ERDC-EL-EP-P 383, 414, 507, 588, WP011, RP092
 ERM 45, MP167, RP052, TP132, TP146
 ETH Zurich 79, 369, 376, 615, 640, TP104, TP108, WP037
 ETSS 375
 Eurofins Agroscience Services 459, MP037
 Eurofins Agroscience Services EcoChem GmbH MP037, WP080
 European Commission Joint Research Centre 62, 290, 294, MP055, MP129, TP113, TP115, TP116
 European Food Safety Authority EFSA 180, 689
 Evergreen State College 23
 Evonik Corporation 175
 Evonik Industries AG TP133
 Exponent, Inc. 10, 25, 90, 91, 94, 138, 285, 474, 479, 562, 606, 669, 684, 689, 725, MP012, MP122, MP143, MP144, MP155, MP156, MP157, MP158, TP048 TP122, TP168, TP191, WP066, WP180, RP021
 ExxonMobil Biomedical Sciences, Inc. 12, 497, 707, MP129, MP136, RP069, WP027, WP185
 ExxonMobil Research Qatar 418, 522
F Fac. of Agriculture Lab Env Tox WP077
 Faculty of Biology MP080
 Farallon Consulting MP118
 FCBA 476
 Federal Environment Agency(UBA) 706
 Federal Institute of Hydrology 173
 Federal University of Oyo-Ekiti, Nigeria MP230
 Federal University of Santa Catarina RP087
 Federal University of Technology WP069, WP129
 Federal University of Technology Owerri 473, TP036, WP069
 Federal University Wukari WP069, WP129
 Federation of Indian Chambers of Commerce & Industry 390
 Fisheries and Oceans Canada 344, MP203, RP109, TP041, WP175
 Flemish Institute for Technological Research VITO 162
 Florida Fish and Wildlife Conservation Commission 636
 Florida Gulf Coast University 311
 Florida International University 177, 733, MP204, TP170
 Florida Sea Grant 11
 Florida State University 212, 656, TP058
 FMC Corp MP223, MP238
 FMC Corp Global Regulatory Sciences 606, 682, MP223, MP238, RP021
 Forestry and Forest Products Research Institute WP126
 Formation Environmental LLC 693
 Fort Environmental Laboratories, Inc. 630, MP072, TP044, WP220
 Franklin Company WP053
 Franklin County Seafood Workers Association TP098
 Franklin Promise Coalition TP098
 Fraunhofer IME 93, 294, TP113, TP115, TP116
 Free University of Brussels 476
 Freestone Environmental Services, Inc. 627
 Freshwater Institute 450, TP165
 Fundacao Oswaldo Cruz 315
G GatePost Risk Analysis 289
 GEI Consultants, Inc. 157, 472, 528, 531, 532, MP029, TP175, WP122
 GenWest 225
 George Mason University TP097
 George Washington University 367, 413, MP004, MP213
 George Washington University Medical Center TP095
 Georgia Aquarium TP061
 Georgia Institute of Technology WP168, WP169
 Geosyntec Consultants 466, 475, MP008, MP064, RP026, WP56
 GHD 505, RP050
 GHD Ltd RP053
 Ghent University (UGent) 707
 Givaudan Fragrances Corporation 175
 Givaudan Schweiz AG 61, 294, TP113, TP115, TP116
 Gloucester Marine Genomics Institute TP070
 GoJo Industries 30
 Golder Associates 293, 407, 525, 621, 714, 716, 720, MP124, TP114
 Government of Alberta WP156
 Government of Nunavut TP040, MP071
 Gradient Corporation 64, 601, 625, MP115, MP220, TP129, TP137, TP177, TP193, WP025, RP049
 Grand Portage National Monument TP110
 Great Ecology RP003
 Great Lakes Environmental Center 346, 674, 675, 717, WP125, WP128
 Great Lakes Institute for Environmental Research, University of Windsor 436
 Great Lakes WATER Institute RP081
 Greenville Health System TP033
 Guangdong Academy of Agricultural Sciences TP153
 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences 519, 546, 611, MP060, RP007
 Gustavus Adolphus College TP017, WP183
H Haley & Aldrich, Inc. 432
 Hanoi University of Science WP144
 HansonRM TP025
 Harvard School of Public Health 558, 618, 650, RP099
 Harvard University 340, 617, 618
 Hatfield Consultants WP156
 HAW Hamburg 173
 HDR, Inc. 674, 675
 Health Canada 525, 639, MP005, RP109, WP091, WP154
 Health Canada Pest Management Regulatory Agency RP016
 Heidelberg University 59, MP130
 Helmholtz Centre for Environmental Research - UFZ 93, 173
 Helmholtz Zentrum München 114, 362, TP087, RP088, RP113
 Henkel AG & Co. KGaA 710, MP220, TP144
 Henkel Consumer Goods, Inc. MP220
 HESI TP131
 Hewlett-Packard 429
 Hillside Middle School MP197
 HOH Surveys TP005
 Hokkaido University MP050, MP051, MP052, TP075
 Honey Bee Research & Extension Lab (HBREL) 120
 Hope College 543, WP036
 HUNTSMAN (Europe) bvba TP133
 Hydrobiology Pty Ltd MP182
 Hydronumerics 348
 Hydroqual 674, 675
I I.I. Mechnikov Ukrainian Anti-Plague Research Institute RP125
 IAWR 220
 IBCIT 645, 647
 iCEINT TP106
 IDA Science and Technology Policy Institute 10
 Idaho Dept of Environmental Quality 628
 Illinois Natural History Survey 419, 435, 672, TP190
 ILS-NICEATM 394
 ILSI Health and Environmental Sciences Institute (HESI) 62, 294, 586, MP129, TP113, TP115, TP116
 Indiana State University 501
 Indiana University 191, MP048, RP124, WP065, WP174
 INIA RP121
 Institut de Physique du Globe de Paris 373
 Institut Teknologi Bandung WP130
 Institute for Hygiene and Environment 455, RP101
 Institute of Hydrobiology MP027, RP125
 Institute of Hydrobiology National Academy of Sciences MP027
 Instituto de Limnología Dr. Raúl a. Ringuelet 315
 Instituto Nacional de Investigaciones Nucleares WP030
 Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas 151, TP007, TP009, WP199
 Instituto Potosino de Investigación Científica y Tecnológica (IPICYT) 41, 725, MP041
 Instituto Superior Técnico TP019, TP026
 Instituto Tecnológico de Costa Rica MP011
 Integral Consulting Inc. 223, 224, 333, 440, 444, 445, 692, 696, RP064, TP120, WP099, WP213, WP214, WP218
 Integrated Atmospheric Solutions LLC 402
 INTERA Inc. MP109
 International Fragrance Associations RP043
 International Lead Zinc Research Organization 557
 International Sturgeon Research Institute TP065
 International Zinc Association 597, WP131
 Intrinsic Environmental Sciences Inc. 34, 38, 96, 157, MP146, MP147, MP148, MP149, MP222, WP066, WP068, WP075, WP123, RP018
 IPGP 373
 IPMA-Portuguese Institute for the Sea and Atmosphere MP142, TP019, TP026
 IRAS 69
 IRB Barcelona 366
 Islamic Azad University Isfahan 264
 ITB WP130
 IVL Swedish Environmental Research Institute Ltd 485
J Jagiellonian University 16, MP080, MP229
 Japan Corbicula Research Institute WP126
 Jinan University 519
 Johns Hopkins School of Medicine 67
 Johns Hopkins University 67, 72, 189, WP084
 Joint Research Centre 294, TP113, TP115, TP116
 Jordan River/Farmington Bay Water Quality Council 3, 4, 5, 6, 7
K Kagoshima University RP024, RP025
 Karlsruher Institut für Technologie WP157
 Katholieke Universiteit Leuven 557
 KCI Technologies, Inc. MP152
 Kennedy/Jenks Consultants 693, WP010
 Kennesaw State University RP103
 Kent State University 201, 493, MP114
 Keystone Environmental Ltd. MP180
 KIGAM RP034
 Kilgour & Associates Ltd. 407
 King County Dept of Natural Resources and Parks RP030
 King Faisal Specialist Hospital & Research Centre MP002
 Kings College London 295
 KJ Scientific LLC 294, 296, TP113, TP115, TP116
 Korea Institute of Ocean Science and Technology MP193, MP196, TP090
 Korea Ocean Research and Development Institute MP193, MP196

AFFILIATION INDEX

Korea Polar Research Institute MP201, RP029, TP084
Korea University RP096, TP189, TP208, WP026, WP070
KREATiS MP132
KTH Royal Institute of Technology TP173
Kyungpook National University 164

L L502 (AEPRD) WP186
Laboratory of Pharmacology and Toxicology RP103
Lakehead University 230
Lamar University 237
Lancaster University 572
Lauren Heine Group 482, 604
Laurentian University MP078, TP020, TP029, TP034
Lebanese University 147
Leuphana University of Lüneburg 425
LimnoTech 745
Linköping University MP203
LK Consultancy 289, 723, MP217
Lomonosov Moscow State University TP042
Los Alamos National Laboratory 331, MP232
Louis Berger Group, Inc. MP057, WP189, WP202, WP211
Louisiana Sea Grant - LSU 11
Louisiana State University 308, 515, MP206, RP012, RP013, TP060, WP048, WP061
Louisiana State University Agricultural Center 515
Louisiana Universities Marine Consortium 308, 515, TP060
Loyola University Chicago 144, 299, TP164
Lubrizol RP142
Ludwig Maximilians University of Munich MP094
LWB Environmental Services, Inc. 447

M Madison Metropolitan Sewerage District TP005
Manhattan College 261, 468
Masaryk University Faculty of Science 61, 171, TP015
Masdar Institute MP139, WP145
Massachusetts Institute of Technology (MIT) 526, 618, MP012, WP100, RP100
Maxxam Analytics 167, 622
MB Laboratories Ltd MP194
McGill University 43, 74, MP042, MP046, MP067, RP081, TP094
McMaster University 231, 671, RP040
MDEQ 464
Medical College of Wisconsin 165
Medical University of South Carolina 213, 309, 636, MP070, RP037, RP090, TP051
Melbourne Water 348
Memorial University of Newfoundland 306, 339, 341, 354, 360, TP025, TP178, WP140
Mermayde 62
Miami University 310, TP006, RP056
Michigan Dept of Environmental Quality 551
Michigan State University 120, 143, 415, 465, 662, MP046, RP081, WP101, WP170
Middle Tennessee State University 108, 109, 253, MP161, MP164, MP169, MP176
Ministère de l'Environnement 704
Ministry of Forests, Lands and Natural Resource Operations RP038
Ministry of Environment 302, MP170
Minnesota Dept of Natural Resources 351, TP049
Minnesota Pollution Control Agency 331, 351, TP049
Mississippi State Chemical Laboratory MP187
Mississippi State University 116, 366, 588, 701, 746, 751, MP026, RP092, RP127, TP064, WP101
Mississippi-Alabama Sea Grant Consortium 11
Missouri State University 610
Missouri University of Science and Technology 87, 88, 276, MP062, WP015
Mizuki Biotec WP149
Monsanto Company 539, 666, MP222, WP066
Montana State University 127
Mote Marine Laboratory MP074
Murray High School MP197
Murray State University TP039, RP104
MUSC RP037
Mutch Associates, LLC 438, 439
MWRDGC 549
Myers Ecotoxicology Services LLC TP095

N Nalco, An Ecolab Company 651
Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China 210
Nanjing University 710, RP086, RP115, TP090
Nankai University 209, MP066, WP024
nanoRisk Analytics TP191
NanoSafe Inc. 746, 752
NASA RP037
National Cancer Institute 68
National Caucus and Center on Black Aging, Inc. TP171
National Caucus Center on Black Aged 565
National High Magnetic Field Lab 212, 656
National Inst of Standards Tech 309, MP070, RP090
National Institute for Basic Biology RP131
National Institute for Environmental Studies 707, 712, MP003, RP131, TP008, WP119, WP144
National Institute for Environmental Studies NIES Japan WP119
National Institute of Advanced Industrial Science 694
National Institute of Metrology TP102
National Institute of Standards and Technology 564, 636, 747, MP070, MP192, RP036, WP083
National Institute of Technology, Tsuruoka College MP106
National Institutes of Natural Sciences RP131
National Oceanic and Atmospheric Administration (NOAA) 16, 23, 33, 39, 118, 130, 131, 132, 133, 203, 208, 225, 254, 257, 258, 316, 490, 691, MP074, MP077, MP184, TP053, TP055, TP058, TP059, TP061, TP163, TP070, WP058, WP117, RP076, RP124
National Park Service MP119, TP109
National Polytechnic Inst MP190
National Res. Centre for Environmental Toxicology 585, MP227
National Research Council USEPA MP010
National Toxicology Program, Interagency Center for the Evaluation of Alternative Toxicological Methods 394
National University of Singapore 83, MP006, MP061, MP173, MP195
Natural Institute of Natural Sciences RP131
Natural Resources Canada 404, WP157
Natural Resources Canada - Canadian Forest Service 401
Nautilus Environmental 18, 612
Naval Air Warfare Center Weapons Division 381, 382
NC State University 409, 673, 736
NCASI RP068
NCATS, NIH TP086
Neff & Associates LLC 518
NEK Associates LTD 724
Neptune and Company Inc MP228
Neptune and Company, Inc. MP228
New York City Dept of Environmental Protection MP057, WP189, WP202, WP211
New York State Dept of Environmental Conserv 254
New York State Dept of Environmental Conservation 257
New York State Dept of Health 158, 159, MP001
Newcastle University 169, 471, WP044, WP045
Newmont Mining Corporation 590
NIBIO WP147
Nicholls State University 296
NIES TP008
NILU - Norwegian Institute for Air Research 171
NIPERA 201, 597, MP114
NIST 560, 564, MP192
NIST MUSC 636, RP036
NISTUniversity of Pau MP192
NIVA 61
NMFS Southwest Fisheries Science Center 357
Nnamdi Azikiwe University TP148
North Carolina State University 148, 193, 365, 398, 399, 452, 673, TP086
North-West University 463
Northeastern University 368, MP138, RP085
Northern Arizona University TP035
Northwest Hydraulic Consultants MP226
Northwestern University MP082
Norwegian Institute for Marine Research 579
Norwegian Institute for Water Research NIVA 61
Norwegian Institute of Public Health 162
Nova Biologicals 119
Nova Scotia Fisheries and Aquaculture TP194
NovaSource Tessenderlo Kerley, Inc. TP048, WP066
NSW Office of Environment and Heritage 579
Nunatsiavut Government 340
NYS Dept of Health 159

O Oak Ridge Institute for Science and Education (ORISE) 114, 117, 362, MP137, MP172, TP003, TP186, WP124
Oak Ridge Institute for Science and Education (ORISE) at USEPA 27, 364, 408, 483, MP137, TP011, TP012, TP107, RP062
Oak Ridge National Laboratory 82, 338, TP027, TP028, TP030, TP031, TP033
Obafemi Awolowo University MP189
Ocean Associates Inc. 316
Ocean Research & Conservation Association RP066
Office of Environment and Heritage WP005
Ohio Environmental Protection Agency 255
Ohio State University 448, 553, 557, 738, WP006
Okayama University 712
Oklahoma Biological Survey WP051
Oklahoma State University 32, 263, 420, 631, 680, MP009, RP057, TP136, TP201, WP013, WP014, WP074, WP098
Old Dominion University MP060
Old Mill Honey Farms 127
Ontario Ministry of Environment and Climate Change MP023
Ontario Ministry of Natural Resources MP078, TP020, TP029
Ontario Ministry of the Environment 256, WP181, WP194
Ontario Ministry of the Environment and Climate Change 170, 195, 196, 407, MP023, MP203, WP173
Oregon Dept of Environmental Quality 693
Oregon Health & Science University 363, 584, 588, WP104
Oregon Health Authority TP013
Oregon State University 16, 22, 165, 168, 177, 242, 262, 275, 312, 508, 543, 659, 708, 749, 751, MP014, MP020, MP116, MP205, MP208, MP209, MP212, TP057, TP069, TP184, WP036, WP208
Oreohelix Consulting 3
ORISE 114, 117, 362, MP137, MP172, TP003, TP186, WP124
P Pace Analytical MP202
Pacific EcoRisk 218, TP104
Pacific Northwest National Laboratory 583, MP082, RP076
Palmer Environmental Consulting Group RP091
Parliament Fisheries Inc 3
Peking University MP075, RP066
Penn State Erie - The Behrend College TP154
People for the Ethical Treatment of Animals 536, MP055
Personal Care Products Council 743
Pest Management Regulatory Agency Health Canada 293, TP114
Pesticide Research Institute 127
PETA International Science Consortium Ltd. MP055
Petnica Science Center MP080
Pfizer, Inc. TP118
Phasera Ltd 198
Physicians Committee for Responsible Medicine MP055
POPs Environmental Consulting 425
Port of Long Beach 619
Port of Los Angeles 619
Portuguese Inst for Fisheries & Sea Research 149, MP142
Pohang University of Science and Technology (POSTECH) 164, 555, MP096, MP201, RP029, TP077, TP078, TP084, TP140, TP142
Pratt School of Engineering 189, 215, 249, 287, 563, MP095, MP097, WP081
PRe Consulting 604
Prefectural University of Kumamoto WP149
Princeton Hydro, LLC 377
Public Health Institute 127
Public Health Ontario 163, MP005
Purdue University 182, MP224, MP239, RP120
Pusan National University 80
Q Queens University 502, WP163, WP207
Queensland Government MP227
R Radboud University 638
Ramboll Environ 30, 168, 200, 466, 475, 724, 725, MP118, TP044, RP004, RP026, RP043, RP048, RP051, RP073, RECETOX WP167
Reed Harris Environmental Ltd. 345
Research Institute for Fragrance Materials (RIFM) 175, RP041, RP043, WP134

Resolution Copper Mining LLC MP124
 RETIA USA, LLC - Legacy Site Services LLC 627, WP213
 Ricerca Biosciences MP223
 Rifcon GmbH RP084
 Rio Tinto 534, 596, 674, 675, 707, MP110, MP116, WP052
 Ritsumeikan University WP149
 RIVM 556, 638, 686, 706, 707
 RIVM Bilthoven 638
 Roosevelt University 435
 Rosenstiel School of Marine Sciences 217
 Roskilde University 251, 298, RP041
 Royal Military College of Canada 502, WP163, WP207
 Royal Roads University MP123, MP194
 RPS ASA 518, 523
 RS Environmental WP153
 RTI International 402, 727
 Rutgers University MP136, TP060, WP038, WP039
 RWTH Aachen University WP105

S S.C. Johnson & Son, Inc. 10, 90, 94, 294, MP072, TP113, TP115, TP116
 SafeDose, Ltd. WP216
 Sage Environmental Consulting TP210
 Saint Marys University TP194, TP203
 San Diego State University MP045, WP117
 San Francisco Bay Regional Water Quality Control Board 626
 San Francisco Baykeeper TP167
 San Francisco Estuary Institute 192, 240, 316, 387, 477, 737, TP167, WP151
 Sanitation Districts of Los Angeles County TP213
 SANOFI 62
 SANParks MP070, RP037, RP090
 São Paulo State University (UNESP) MP198, TP182
 Saskatchewan Environmental Society 13
 Saskatchewan Ministry of Environment MP120
 Saskatchewan University 554, WP067
 Savannah River Ecology Laboratory 635
 Savannah River National Laboratory TP205
 Savannah River Nuclear Solutions - ACP TP205
 Savannah State University TP039, RP104
 School of Biological Sciences RP080
 School of Environment and Sustainability 679
 Science Museum of Minnesota TP049
 Scientific Institute of Public Health Belgium WP143
 Sciei Environmental Food and Beverage 78, 655
 SEA Environmental Decisions Ltd 725
 Seoul National School TP090, WP205
 Seoul National University RP042, TP090, WP057, WP205
 SETAC 10
 Seton Hall University TP091, TP092, TP198
 Shanghai Jiaotong University 98
 Shell Health 63, 179, 700, 707, WP043, WP044
 Shell Health - Americas 63, 387
 Shell International 63, MP018, TP133
 Shell International B. V. 63
 Shell International Limited 179, WP043
 Shell Oil Co. 63, 179, 700, WP043
 Simon Fraser University 181, 524, 621, 623, MP033, MP044, RP026, RP054, RP089, RP091, RP106, RP135, TP002
 SINTEF 470, 579
 SiREM MP008
 Skidmore College WP060
 Slovenska Zdravotnicka Univerzita v Bratislave 162
 SLR Consulting (Canada) Ltd. MP123
 SLR International Corporation 693
 Smithers Viscient 121, 122, 606, 607, 608, MP036, MP160, RP020, RP021
 Snyderville Basin Water Reclamation District MP085, MP086
 SOL Engineering Services, LLC RP032
 Soleil Consulting, LLC 29, TP131
 SOLVAY TP133
 South Carolina Dept of Natural Resources 636, RP036, RP037
 South Valley WRF 60
 Southern California Coastal Water Research Project (SCCWRP) 208, 260, 318, 391, 392, 412, 705, MP045, WP117
 Southern Illinois University TP154
 Southern Illinois University Carbondale 192, 276, 315, 737, WP118, RP120
 Southern Illinois University Edwardsville RP128
 Southwest Jiaotong University 100
 Southwest Research Institute 262
 SPAWAR Systems Center WP003, WP013, WP014

SPAWAR Systems Center Pacific 504, WP003, WP014
 SPAWAR Systems Center San Diego 466
 Specialized Environmental Modeling, LLC 620
 Springborn Smithers Laboratories 608
 SRC, Inc. 430, 600, 603, RP061, TP134, WP103
 SSC Pacific 379
 St Francis Xavier University 339
 St. Cloud State University 113, 115, 546, 548, 549, MP026, RP132, WP112, WP114
 St. Lawrence River Institute of Environmental Sciences 156
 Stantec Consultants Ltd. 270, 387, MP019, MP049, TP165
 Stantec Consulting Ltd. 387, 457, MP019, TP165
 State and Federal Contractors Water Agency WP182
 State of California TP127, TP128
 State of Delaware 467
 State University of New York (SUNY) Fredonia 245, TP167
 Stockholm University 79, 142, 246, 455, 485, 575, 684, 687, 739, MP203, RP101, TP145, WP037, WP139, WP175
 Stone Environmental, Inc. 36, 37, 134, 681, MP146, MP148, MP149, RP018
 Stony Brook University RP024, RP025, TP056
 Stratus Consulting 216, 218, 219, 308, 310, 311, 313, TP052, TP053
 Stratus Consulting - Abt Associates 218, 308, 310, 311, 313, TP053, TP059
 Sumitomo Chemical Co Ltd RP063
 Sun Yat-sen University 160, RP086
 SUNY Oswego 342
 Sustainable Ecosystem Restoration, LLC 226
 Sustainable Solutions International 180
 Swedish University of Agricultural Sciences (SLU) MP015
 Swerea IVF AB Gothenburg 485
 Swinomish Indian Tribal Community MP212
 Swiss Centre for Applied Ecotoxicology EAWAG - EPF 707
 Swiss Federal Institute of Technology 79, WP037
 Syngenta 141, 446, 713, MP037, MP145, MP234, MP235, WP066
 Syngenta Crop Protection TP205
 Syngenta Crop Protection, LLC 134, 198, 606, MP037, MP234, MP235, RP021, WP066
 Syngenta Crop Protection Muenchwilen AG MP235
 Syngenta Crop Protection, Inc. 134, 141, 353, 446
 Syngenta Ltd MP234
 SynTech Research Laboratory Services WP066

T Tamil Nadu Agricultural University 545
 Tanta University WP067
 Tarbiat Modares University TP065
 TCEQ. TP133
 TDC Environmental, LLC 598, TP128
 Technical University of Denmark 27, 84, 173, 306, 425, 487, RP033, WP086, WP135, WP139, WP195
 Technische Universität München 317, WP182
 Tennessee Wildlife Resources Agency MP176
 TERA 31
 Tetra Tech, Inc. 668, 709, 710, 711, MP163, MP181, TP138, TP144, RP070
 Texas A&M University 75, 120, 152, 334, TP072
 Texas Christian University 243, 416, 512, MP131, RP112
 Texas Parks and Wildlife 310, 313
 Texas Sea Grant 11
 Texas Southern University 101, MP113, WP120
 Texas State University MP112, TP197
 Texas State University - San Marcos 243
 Texas Tech University 82, 153, 214, 335, 357, 515, 700, MP012, MP017, MP073, RP006, TP061, TP072, TP212, WP025, WP096, WP197, WP209
 The Boeing Company 612
 The Citadel 16, 244, 247, TP163
 The College of Wooster 265, 550
 The Copperbelt University WP172
 The Dale Bumpers National Rice Research Institute RP108
 The Dow Chemical Company 62, 294, 393, 539, 540, 667, MP135, RP060, RP110, TP113, TP115, TP116, TP131, TP133, WP111
 The Hamner Institutes for Health Sciences 589, TP087
 The Humane Society of the United States 536
 The Institute for Watershed Sciences 4, 5, 6
 The LifeLine Group 31
 The Louis Berger Group WP211
 The McConnell Group 419, 465
 The Ohio State University 448, 678, 738

The Pennsylvania State University 283
 The Procter & Gamble Company (P&G) 30, 60, 61, 62, 175, 294, 706, 709, 710, 711, 741, 742, MP129, MP133, MP166, RP045, TP113, TP115, TP116, TP133, TP144, TP209, WP046
 The University of Iowa 85, 527
 The University of Kitakyushu 653, 658, WP115
 The University of Melbourne 17, 42, 348, MP141, TP119
 The University of Queensland 552, MP227
 The University of Sheffield 347, 713
 The University of Southern Mississippi 218, 332, TP054
 The University of Texas at Austin MP017
 The Warby Group LLC 359
 The Water Laboratory 735
 thinkstep 482
 Thompson Rivers University RP038
 Tianjin Chengjian University WP115
 Tianjin University 209
 Tianjin University of Science and Technology MP066
 TIMOTHY BINGMAN TP147
 Tokushima University 712
 Tokyo University of Agriculture and Technology 100, WP126
 Toronto Public Health 163, MP005
 Tottori University WP126
 Towson University 110, 635, MP073, MP151, MP152, RP075, TP212, WP062, WP188, WP197
 toXcel LLC 622
 Toxicology Excellence for Risk Assessment MP214, WP216, MP218
 ToxServices LLC 424, 426, 428, 484
 Toyohashi University of Technology TP023
 Toyota National College of Technology TP023
 Trans Canada WP029
 Transcon Environmental MP232
 TRE Environmental Strategies 506, TP126
 Trent University 586, RP106, WP090, WP132
 Troy University TP028, TP030
 Tufts University 68, 650, RP099
 Tuskegee University TP173
 TX Commission on Environ. Quality MP237
 Tyler Technologies 303

U UFC Centre for Environmental Research 710
 UFZ Center for Environmental Research 315
 UMCES TP052
 Umea University 570, MP203, WP109, WP175
 UNED RP039, RP121
 Unesp- Institute of Chemistry WP141
 Unilever 572, 586, 699, 706, 724, 744, RP078, WP088, WP089, WP094, WP133, WP137, WP138
 Unilever RD Colworth WP137
 Unilever Research 699, MP018, TP133
 Union College WP060
 Universidad Autónoma de Baja California Sur 357
 Universidad Autónoma de Campeche TP006
 Universidad Autónoma de Ciudad Juárez MP104
 Universidad Autonoma de San Luis Potosí (UASLP) 41, MP041
 Universidad Autonoma de Tamaulipas TP006
 Universidad Autonoma de Yucatan MP190
 Universidad Autónoma del Estado de México 151, MP104, TP007, TP009, WP030
 Universidad Autonoma Metropolitana TP139, WP198
 Universidad Autonoma Metropolitana Iztapalapa TP046, TP139, WP198
 Universidad de Concepción MP224, MP239
 Universidad Federal do Maranhão MP198
 Universidad Nacional Autónoma de México (UNAM) MP190, RP130, TP074, TP135
 Universidad Veracruzana TP009, MP042
 Universidade de Aveiro 366, MP111, MP142
 Universidade de Lisboa 149
 Universidade de São Paulo MP189, MP198
 Universidade Estadual de Campinas (UNICAMP) MP174, MP177
 Universidade Federal de Santa Catarina RP087
 Universidade Federal do Rio Grande - FURG TP207
 Universitat Autònoma de Barcelona 123, 326, 366
 Université Catholique de l'Ouest MP101
 Université de Bordeaux MRGM 366
 Université de Nantes MP101
 Université de la Sorbonne TP169
 Université de Limoges 147
 Université de Lyon 290

AFFILIATION INDEX

Université de Montréal WP095
Université de Sherbrooke 336
Université du Québec 55
Université du Québec à Montréal 268, 269
Université du Québec, INRS 55, 56, 404, 594, MP025
Université Libre de Bruxelles WP143
Universités Bordeaux 1 et 2 366
University at Albany-State University of New York WP060
University Koblenz Landau 723
University of Adelaide 552, 593
University of Alabama 395, WP034
University of Alaska Fairbanks 357
University of Alberta 184, 403, 405, 496, WP007, WP008, WP164, WP178
University of Amsterdam MP054
University of Antwerp 567, 585, 591, WP195
University of Antwerp, Toxicological Center 585, WP195
University of Arizona 66, 508, 559, TP005
University of Austin Texas 307
University of Aveiro 149, 366, MP142
University of Barcelona TP037
University of Basel WP064
University of Belgrade 16
University of Birmingham 280, TP142, WP065
University of Birmingham
University of Brest 311
University of British Columbia 51, 208, 304, 534, 671, 674, 675, MP110, RP109
University of Calgary 277
University of California 487, 520, MP226, WP063, WP143
University of California Berkeley 68, 161, 206, 315, MP082
University of California Davis 204, 279, 317, 357, 395, 705, MP226, TP055, WP182, RP017, RP102
University of California Riverside 57, 58, 82, 260, 307, 715, MP126, MP128, TP169, WP146, WP193, WP203, RP074
University of California Los Angeles 431, 599
University of California San Diego WP117
University of California San Francisco MP004, MP213
University of California Santa Barbara 277, 486, TP063
University of Canberra WP005
University of Cincinnati 31, 745, MP209, MP214, MP218, WP046, WP216
University of Colombo TP214
University of Colorado-Denver 327
University of Concepcion MP224, MP239
University of Connecticut 282, 344, 381, 382, TP070, WP018
University of Delaware 82, 312, 439, 595, RP059
University of Duisburg-Essen 145, 556
University of East Anglia 471
University of Eastern Finland 173, RP008
University of Exeter 574
University of Florida 287, 314, 391, 392, 412, 703, 705, MP063, MP095, MP097, MP100, MP102, RP015, RP103, RP127, TP098
University of Florida, College of Public Health Health Professions 287, TP098
University of Florida, College of Medicine TP098
University of Foggia 403
University of Georgia 185, 234, 433, 634, 635, MP171, RP126, TP199, TP204, TP205
University of Georgia - Savannah River Ecology Laboratory 634
University of Gothenburg WP050
University of Guelph 10, 16, 95, 180, 195, 256, 297, 353, 456, 457, 503, 538, 686, 740, TP117, WP181, WP194
University of Hawaii 274
University of Hawaii at Manoa 378, 380, WP016
University of Heidelberg 59, MP129, MP130
University of Hildesheim 42
University of Hong Kong 710
University of Houston 273
University of Houston Clear Lake 105, 649
University of Ibadan 70
University of Idaho WP064, RP076
University of Illinois Urbana-Champaign 188, MP082
University of Iowa 85, 323, 640, 641
University of Kentucky 187, 371, 435
University of Kitakyushu WP115
University of Lethbridge 230, 302, 501, MP024, MP025, MP031, MP170, RP134, WP161, WP162
University of Liverpool 16, 699, MP080
University of Louisiana at Lafayette TP149, WP187, WP204
University of Manitoba 266, 353, 387, 450, 451, 457, 685, MP019, RP014, WP142, WP175
University of Manitoba 270
University of Maryland 154, 155, 216, 514, MP047, MP179, RP118, TP005, TP166
University of Maryland Baltimore County 467, 469, MP012, MP127, MP153
University of Maryland Center for Environmental Science 469, MP179
University of Maryland College Park 514, 560, RP118
University of Massachusetts Boston 328, WP063
University of Massachusetts Lowell 355, 426, 428, 431
University of Melbourne TP119
University of Miami 52, 217, 307, 308, 636
University of Miami RSMAS 52, 308
University of Michigan 27, 201, 206, 239, 254, 487, 493, 592, 614, 706, 745, MP012, MP114, RP097, TP018, TP123, WP094, WP127
University of Michigan, Ann Arbor 206, WP094
University of Milano 180
University of Minnesota 93, 136, 440, 446, 722, MP082, RP080, TP049, WP183, WP214
University of Minnesota Duluth 294, 325, 352, 361, TP010, TP017, TP049, TP113, TP115, TP116
University of Miskolc MP148
University of Mississippi 751, TP064
University of Missouri RP098
University of Missouri Columbia TP096, WP206
University of Namur 329, 395, 698, WP032, WP034
University of Nebraska 449, WP035
University of Nebraska Omaha 20, 449, MP030, MP211, TP065
University of Nebraska Lincoln 449, 682, MP030, WP035, WP047, R080
University of Nebraska Medical Center 20, 449, MP030, TP065
University of Nevada Reno 237, MP226
University of New Brunswick 292, 341, 711, TP034, WP155
University of New Brunswick Saint John MP073, MP165, TP034
University of New Orleans MP093
University of Nigeria TP148, TP187, WP069
University of Nigeria Nsukka MP230
University of North Carolina at Chapel Hill 452, WP171
University of North Carolina at Charlotte MP162, MP184, TP073
University of North Carolina at Greensboro 150, 211, TP018
University of North Carolina Wilmington 308, 311, 423
University of North Georgia WP201
University of North Texas 107, 186, 219, 307, 308, 310, 313, 416, 421, 512, MP108, RP028, RP056, RP112, TP191, WP215
University of Notre Dame WP064
University of Oklahoma 507, WP051
University of Ontario Institute of Technology 322, 397, MP178, RP117, RP133
University of Osnabrueck 180
University of Otago 124, 678, WP032
University of Ottawa 46, 156, 350, 434, 525, WP068, WP091, RP109
University of Pittsburgh 652
University of Pittsburgh at Johnstown WP040
University of Poitiers 124
University of Quebec 55
University of Quebec at Montreal 268, 269, MP186, TP050
University of Queensland RP101, MP227
University of Regina 238
University of Rhode Island 170, 196, 261, 468, 618, WP107
University of Rochester Medical Center 650
University of San Francisco RP011
University of São Paulo (USP) MP189, MP198, TP037, TP141, TP182
University of Saskatchewan 15, 44, 271, 292, 301, 336, 337, 386, 388, 389, 406, 437, 496, 499, 546, 554, 567, 679, MP024, MP025, MP031, MP043, MP079, MP120, MP170, MP185, MP231, RP086, RP093, RP111, RP115, TP085, WP029, WP033, WP067, WP071, WP073, WP105, WP106, WP107, WP108, WP156, WP158, WP165, WP200
University of South Africa TP152
University of South Australia 552
University of South Carolina 58, 203, 208, 225, 280, MP134, RP108, RP124, TP024, TP033, WP085
University of South Carolina Aiken WP131
University of South Dakota 492
University of Southern California WP059
University of Southern Mississippi 214, 218, 226, 332, MP093, TP054
University of St. Thomas 361, 412, 549, 640, MP026, MP172, RP107, RP116, RP136, TP186, WP183
University of Strathclyde 450, 451, WP142
University of Surrey 297, TP117
University of Technology Sydney 81
University of Texas MP097, MP102
University of Texas at Austin 306, WP096
University of the West of Scotland TP160
University of Toronto 73, 76, 163, 264, 450, 582, 613, 616, 681, MP005, RP018, TP111, WP173, WP178
University of Toronto Scarborough 525, 581, 582, 586, 616, MP059, WP089, WP090, WP091, WP132, WP133, WP135, WP136, WP138
University of Utah 5, 8, MP197
University of Utrecht 68, 172, MP018, MP054
University of Victoria 575, 632, RP038, RP089, RP109, University of Vienna TP104
University of Washington 118, 119, 367, 427, 640, 654, WP041, RP076
University of Washington Tacoma 654
University of Washington Tacoma/Seattle 323, 641, 654
University of Waterloo 54, 256, 498, 711, MP025, MP078, MP165, RP016, TP111, WP159
University of West Florida MP150
University of Western Ontario TP022, MP078
University of Windsor 195, 344, 436, MP044, TP022, TP040
University of Winnipeg 266, 450, 451, MP011, MP049, RP014, WP142
University of Wisconsin 86
University of Wisconsin Madison 86, 188, MP082, MP098, MP202
University of Wisconsin Milwaukee 188, 254, 257, 258, 259, 324, 379, 411, MP082, MP098, TP088, WP193, RP081, RP122
University of Wyoming 369, WP072
University of York 587, 713, MP028, RP078
URS Corporation 315, RP031, WP021, WP028, WP053, WP055
US Army 377, 384, 507, 624, TP059, WP011, WP012, WP014
US Army Corps of Engineers (USACE) 173, 254, 257, 259, 377, 504, 517, 573, 584, 624, MP013, TP014, WP012, RP002, RP100
US Army Edgewood Chemical Biological Center 510, WP001, WP002
US Army Engineer Research and Development Center (ERDC) 116, 259, 363, 364, 377, 383, 384, 414, 507, 517, 573, 584, 588, 701, 746, 752, MP026, TP059, TP064, TP121, WP011, WP012, WP013, WP031, WP086, WP189, RP032, RP033, RP092, RP100
US Army Installation Management Command (IMCOM) 504
US Army Institute for Public Health 10, 286, 509, RP049
US Army Public Health Command 94, 506, 509, MP039, MP040
US Dept of Agriculture (USDA) 82, 135, 461, 677, 729, TP179, WP035, WP110, RP119, RP132
US Dept of Energy MP109
US Environmental Protection Agency (USEPA) 9, 33, 39, 62, 91, 103, 112, 114, 116, 117, 128, 130, 131, 132, 133, 137, 139, 174, 178, 214, 221, 227, 234, 236, 237, 252, 253, 254, 255, 257, 284, 294, 325, 327, 330, 333, 346, 361, 362, 363, 364, 365, 372, 394, 396, 408, 409, 410, 412, 419, 442, 443, 444, 445, 460, 464, 465, 480, 483, 521, 530, 565, 567, 569, 571, 577, 600, 603, 605, 665, 668, 670, 672, 676, 687, 693, 697, 701, 702, 705, 723, 724, 726, 730, 731, 732, 734, 752, MP010, MP012, MP013, MP026, MP027, MP028, MP038, MP056, MP069, MP109, MP129, MP134, MP137, MP154, MP172, MP215, MP216, MP236, RP009, RP019, RP035, RP058, RP062, RP064, RP065, RP067, RP070, RP077, RP079, RP082, RP083, RP088, RP113, RP119, RP125, TP003, TP010, TP011, TP012, TP014, TP032, TP055, TP086, TP087, TP089, TP100, TP103, TP107, TP109, TP113, TP115, TP116, TP134, TP138, TP147, TP150, TP171, TP174, TP181, TP183, TP186, TP190, TP192, TP202, TP206, TP215, WP004, WP049, WP097, WP102, WP124, WP125, WP128, WP184
US Fish and Wildlife Service (USFWS) 10, 23, 33, 35, 39, 90, 113, 115, 128, 130, 131, 132, 154, 155, 272, 273, 316, 387, 441, 514, 551, 602, 693, 697, MP048, MP089, MP216, MP225, TP004, TP094, TP095, TP109, TP154, TP157, TP166, TP192, RP064
US Food and Drug Administration (USFDA) 235, 642, 644, 713
US Forest Service (USFS) 154, 155, MP047

US Geological Survey (USGS) 47, 58, 82, 87, 113, 114, 126, 197, 199, 201, 236, 237, 238, 239, 240, 241, 242, 245, 253, 270, 273, 274, 279, 280, 290, 292, 305, 319, 336, 340, 362, 381, 382, 385, 391, 392, 412, 419, 441, 453, 465, 488, 490, 491, 492, 546, 569, 605, 610, 711, 725, 730, 731, 732, MP007, MP026, MP062, MP089, MP175, MP183, MP216, MP226, MP233, RP022, RP023, RP044, RP071, RP107, RP118, TP095, TP109, TP112, TP154, TP166, TP190, TP192, TP195, TP200, TP215, TP216, WP052, WP076, WP192, WP206

US Geological Society 305, 331, TP071, TP200

US Navy 361, 379, 380, TP162, WP003, WP013, WP014, WP019

US Research and Development Center 384, 624, 746, WP012

Utah Dept of Air Quality 28

Utah Division of Water Quality 1, 2, MP083

Utah State University 28, 84, 478, 633, MP059

Utah Water Research Laboratory 478

Utrecht University 61, 172, MP018, MP054, WP134

V Valdosta State University 52
 Valent U.S.A. Corp. 123, MP034, MP035
 VETAGRO-SUP 458

Virginia Institute of Marine Science 190, 273, 311, TP095, TP161, WP191

Virginia Tech MP138
 VITO 61
 VITO-ABS 61
 Vrije Universiteit Brussel WP143
 VU University Amsterdam 69, 162, 485, 576, 735
 VulPro TP005

W Wadsworth Center, New York State Dept of Health 158, 159, MP001
 Wageningen University 710, 711
 Warren Pinnacle Consulting, Inc. 226
 Washington Dept of Ecology 429, WP036
 Washington State Dept of Agriculture 40, MP145
 Washington State University 23, MP140, MP145
 Waterborne Environmental, Inc. 176, 440, 606, 643, 682, 713, MP032, MP087, MP090, MP091, MP092, RP021, RP027, RP028, RP046, TP048, WP066, WP210, WP214, WP217, WP221
 Wayne State University 490, WP060
 West Chester University 539
 West Texas A&M University 99, MP237
 Western Lake Superior Sanitary District MP028
 Western Purple Martin Foundation MP226
 Western University TP020, TP029

Western Washington University 14, 111, 320, 321, 663, 691, 728, TP038, WP022, RP001
 Westminster College MP084, WP062
 Wildlife International 606, 609, MP065, RP021, TP045
 Wilfrid Laurier University 51, 53, 146, 538, MP148, MP149, WP075
 Windward Environmental LLC 49, 50, 529, 533, 534, 627, 693, 695, MP110, MP116, RP005, RP105
 Wood Buffalo Environmental Association 401, 402, WP153
 Woods Hole Group WP189, WP202, WP211
 Woods Hole Oceanographic Institution RP109, RP119
 Wright State University MP114

XYZ Xinhua Hospital TP024
 Yale University 367, 413, WP081
 Yantalo Peru Foundation 165
 Yeungnam University RP034
 York University MP226
 Zemo & Associates 562
 Zoetis 643, WP221

Code of Conduct

Members of the Society of Environmental Toxicology and Chemistry are expected to exhibit the highest standards of integrity and professionalism. To ensure a strong and successful organization, our activities require honesty and equity and should reflect well on the Society. In the spirit of promoting Environmental Quality through Science®, members should strive to be good stewards of environmental resources and effective and objective contributors to the environmental discussion globally as well as locally.

Professional behavior and integrity are also expected from every attendee (members and nonmembers alike) of SETAC meetings, workshops and activities.

Each member and all persons participating in SETAC meetings and activities are bound by this code of ethics and should:

- » Conduct themselves responsibly, objectively, lawfully and in a nondiscriminatory manner
- » Ensure that presentations during Society-sponsored events and other communications are restricted to and based on scientific principles and made in a respectful manner
- » Respect the rights, interests and contributions of professional colleagues
- » Respect intellectual property and provide appropriate attribution for all intellectual property arising elsewhere
- » Declare and avoid conflicts of interest
- » Not knowingly make false or misleading statements, or engage in activities that could be viewed as defamatory about a professional colleague or an organization
- » Recognize and respect confidentiality while being honest and forthcoming in all issues of public record
- » Objectively and clearly communicate scientific methods, understanding and knowledge in a professional manner
- » Conduct research and related activities so as to avoid or minimize adverse environmental effects of that research, and ensure compliance with legal requirements for protection of researchers, human subjects, and research organisms and systems

Cell Phones

Out of courtesy to our speakers and attendees, we require that all cell phones be turned off during sessions and meetings.

Environmental Awareness

In maintaining a high standard of environmental awareness and compliance, this annual meeting is designated nonsmoking. To the best of our ability, recycled and recyclable food and beverage containers will be used, with segregated refuse containers readily available. Event food and beverage menus will offer alternatives for health and dietary preference where possible. Paper and cardboard will be collected and recycled.

Wi-Fi

Wi-Fi will be available throughout the convention center. SETAC is not responsible for any damages or loss of data caused by accessing this connection. Printing capabilities will not be provided. Viewing web sites that are controversial or in questionable taste is strictly prohibited. Such use could warrant loss of Wi-Fi privileges.

Media Policy

Media representatives are cordially invited to attend the SETAC North America 36th Annual Meeting.

SETAC's media policy is designed to ensure a professional forum in which presenters and other meeting registrants can discuss science-based issues freely and in which their concerns about proprietary research data and other information is acknowledged and respected. It is further designed to ensure a forum in which journalists and other media representatives can gather the information they need to deliver factual reporting.

SETAC can provide:

- » Press releases and news updates
- » Photos, videos or other supporting files when available
- » Assistance arranging interviews with SETAC officers, members and presenters before or at the meeting

In return, we expect you to:

- » Wear your media badge, and identify yourself as a member of the press when you attend presentations or talk with any group or individual
- » Obtain permission from the Executive Director of SETAC North America, Greg Schiefer, and from the subject presenters or meeting registrants before you film, tape or otherwise record any activity or interview at this event

- » Respect a presenter's or meeting participant's choice to talk with you or to decline

If you have not yet applied for a complimentary media pass or would like to schedule an on-site or telephone interview, please contact the Registration Desk.

Any media representative who sells, markets or represents a company for purposes of obtaining advertising or subscriptions from any exhibitor or registrant will immediately forfeit press credentials for this and subsequent meetings.

Audio, Photo and Video Policy

Recording, Photographing, Interviewing Not Allowed

No attendee at a SETAC annual meeting may record, film, tape, photograph, interview or use any such media during any presentation, poster display or exhibit without the express, advance approval of the executive director of SETAC North America. This policy applies to all SETAC members, nonmembers, guests and exhibitors as well as members of the print, online or broadcast media.

Photo Release

Photographs will be taken at the SETAC North America 36th Annual Meeting. By registering for this meeting, you agree to allow SETAC to use your photo in any SETAC-related publication or website.

Presentation Upload and Preview

If you are a platform presenter, you have two choices for uploading your PowerPoint presentation: 1) online before the meeting or 2) onsite at the Presentation Services booth by 4:00 p.m. on the day before your session.

Recorded Sessions

Certain presentations will be recorded (slides and voice) for publication by SETAC. To ensure the proper recognition and respect for intellectual property, presenters at this meeting have agreed to SETAC's Copyrights and Presenter Responsibilities, declaring their right to grant SETAC North America permission to use, reproduce, display and distribute the works in their presentations, whether their own work or that of others. Recorded sessions are indicated by in the meeting program. Q&A sessions may also be recorded.

**Taking your
product to new
markets?**

**Who better to support your product
throughout its life than the experts
who helped you develop it?**

Get post-registration support from the product development experts at ABC Laboratories.

ABC Laboratories is now part of the EAG family of companies. Together with Wildlife International, PTRL West and PTRL Europe, we offer a full suite of environmental testing services in support of new product development, registration and re-registration, data call-ins, and compliance with EDSP, REACH and other global regulations.

Columbia, MO • Easton, MD • Hercules, CA • Santa Clara, CA • Ulm, Germany • Lyons, France • Tokyo, Japan

EAG
Evans Analytical Group
www.eag.com

COMPLIANCE SERVICES INTERNATIONAL

*Serving Industry
Since 1988*

**Global Regulatory
and Environmental Strategies**

CONSULTING SERVICES

- Ecological Risk Assessment
- Endangered Species Analysis
- Study Monitoring & Data Development
- REACH Chemical Safety Assessment & Reports
- Exposure Modeling
- Endocrine Disruptor (EDSP) Support
- Weight of Evidence (WoE) Analysis
- USA & EU Regulatory Affairs
- Toxicology & Chemistry Consulting
- Litigation-Scientific Support

Visit CSI
@
Booth 402

*Crop Protection
Biocides/Antimicrobials*

Animal Health

*Industrial Chemicals
Human Pharmaceuticals*

Offices in the USA and the UK

USA HEADQUARTERS

7501 Bridgeport Way West
Lakewood, WA 98499
Tel: 253 473 9007

EUROPEAN HEADQUARTERS

Pentlands Science Park, Penicuik
Nr. Edinburgh, EH26 0PZ, UK
Tel: +44 (0) 131 445 6080

E-mail: info@complianceservices.com
www.complianceservices.com

**Providing
innovative approaches
to solving regulatory and
environmental challenges**